Skip to main content
Log in

Langevin diffusions on the torus: estimation and applications

  • Published:
Statistics and Computing Aims and scope Submit manuscript

A Correction to this article was published on 31 October 2023

This article has been updated

Abstract

We introduce stochastic models for continuous-time evolution of angles and develop their estimation. We focus on studying Langevin diffusions with stationary distributions equal to well-known distributions from directional statistics, since such diffusions can be regarded as toroidal analogues of the Ornstein–Uhlenbeck process. Their likelihood function is a product of transition densities with no analytical expression, but that can be calculated by solving the Fokker–Planck equation numerically through adequate schemes. We propose three approximate likelihoods that are computationally tractable: (i) a likelihood based on the stationary distribution; (ii) toroidal adaptations of the Euler and Shoji–Ozaki pseudo-likelihoods; (iii) a likelihood based on a specific approximation to the transition density of the wrapped normal process. A simulation study compares, in dimensions one and two, the approximate transition densities to the exact ones, and investigates the empirical performance of the approximate likelihoods. Finally, two diffusions are used to model the evolution of the backbone angles of the protein G (PDB identifier 1GB1) during a molecular dynamics simulation. The software package sdetorus implements the estimation methods and applications presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

Notes

  1. Note that \(-(x_2-x_1\text {e}^{-(t_2-t_1)}+2k\pi \text {e}^{-t_2})^2\) should be in the exponential’s denominator of Liu (2013)’s (15) and (16).

  2. Note the similar argument given in Roberts and Stramer (2002), albeit in their equation (24) the covariance matrix is not symmetric, probably because of a typo in (25), which should have been \((J(x)a_{x,h})'=J(x)a_{x,h}\).

  3. In Shoji and Ozaki (1998) the drift approximation is done by Itô’s formula. To obtain a simpler pseudo-likelihood, we use a local linear approximation of b as in Ozaki (1985) (for the case \(p=1\)). Without this extra simplification, the expectation becomes \(\tilde{E}_\varDelta ({\varvec{\varphi }})=E_\varDelta ({\varvec{\varphi }})+J({\varvec{\varphi }})^{-2}(\exp \{J({\varvec{\varphi }})\varDelta \}-{\mathbf {I}}-J({\varvec{\varphi }})\varDelta )M({\varvec{\varphi }})\) with \(M({\varvec{\varphi }})=\frac{1}{2}\left( \mathrm {tr}\left[ {\mathbf {V}}({\varvec{\varphi }}){\mathbf {H}}_1({\varvec{\varphi }})\right] ,\ldots ,\mathrm {tr}\left[ {\mathbf {V}}({\varvec{\varphi }}){\mathbf {H}}_n({\varvec{\varphi }})\right] \right) '\) and \({\mathbf {H}}_i({\varvec{\varphi }})=\left( \tfrac{\partial ^2b_i({\varvec{\varphi }})}{\partial \phi _k\partial \phi _l}\right) _{1\le k,l\le p}\), \(i=1,\ldots ,p\).

References

  • Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises–Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  • Bernstein, D.S., So, W.: Some explicit formulas for the matrix exponential. IEEE Trans. Autom. Control 38(8), 1228–1232 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos, A., Papaspiliopoulos, O., Roberts, G.O., Fearnhead, P.: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 68(3), 333–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos, A., Papaspiliopoulos, O., Roberts, G.O.: Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12(6), 1077–1098 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bibby, B.M., Sørensen, M.: Simplified estimating functions for diffusion models with a high-dimensional parameter. Scand. J. Stat. 28(1), 99–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Bladt, M., Finch, S., Sørensen, M.: Simulation of multivariate diffusion bridges. J. R. Stat. Soc.: Ser. B Stat. Methodol. 78(2), 343–369 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Bottaro, S., Lindorff-Larsen, K., Best, R.B.: Variational optimization of an all-atom implicit solvent force field to match explicit solvent simulation data. J. Chem. Theory Comput. 9(12), 5641–5652 (2013)

    Article  Google Scholar 

  • Breckling, J.: The Analysis of Directional Time Series: Applications to Wind Speed and Direction. Lecture Notes in Statistics, vol. 61. Springer, Berlin (1989)

  • Codling, E., Hill, N.: Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters. J. Math. Biol. 51(5), 527–556 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Dacunha-Castelle, D., Florens-Zmirou, D.: Estimation of the coefficients of a diffusion from discrete observations. Stochastics 19(4), 263–284 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Dehay, D.: Parameter maximum likelihood estimation problem for time periodic modulated drift Ornstein Uhlenbeck processes. Stat. Inference Stoch. Process. 18(1), 69–98 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Dehling, H., Franke, B., Kott, T.: Drift estimation for a periodic mean reversion process. Stat. Inference Stoch. Process. 13(3), 175–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Émery, M.: Stochastic Calculus in Manifolds. Universitext, Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  • Frank, T.D.: Nonlinear Fokker–Planck Equations: Fundamentals and Applications. Springer Series in Synergetics. Springer, Berlin (2005)

    Google Scholar 

  • Hill, N., Häder, D.P.: A biased random walk model for the trajectories of swimming micro-organisms. J. Theor. Biol. 186(4), 503–526 (1997)

    Article  Google Scholar 

  • Hsu, E.P.: Stochastic analysis on manifolds, Graduate Studies in Mathematics, vol. 38. American Mathematical Society, Providence (2002)

    Google Scholar 

  • Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations: With R Examples. Springer Series in Statistics. Springer, New York (2008)

  • In ’t Hout KJ, Foulon S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7(2), 303–320 (2010)

  • Jammalamadaka, S.R., SenGupta, A.: Topics in Circular Statistics, Series on Multivariate Analysis, vol. 5. World Scientific Publishing, River Edge (2001)

    Book  Google Scholar 

  • Jona-Lasinio, G., Gelfand, A., Jona-Lasinio, M.: Spatial analysis of wave direction data using wrapped Gaussian processes. Ann. Appl. Stat. 6(4), 1478–1498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, M.C., Pewsey, A.: A family of symmetric distributions on the circle. J. Am. Stat. Assoc. 100(472), 1422–1428 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, S.: A Markov process for circular data. J. R. Stat. Soc.: Ser. B Stat. Methodol. 72(5), 655–672 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kent, J.: Discussion of paper by K. V. Mardia. J. R. Stat. Soc. Ser. B 37(3), 377–378 (1975)

    Google Scholar 

  • Kent, J.: Time-reversible diffusions. Adv. Appl. Probab. 10(4), 819–835 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler, M.: Simple and explicit estimating functions for a discretely observed diffusion process. Scand. J. Stat. 27(1), 65–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler, M., Sørensen, M.: Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5(2), 299–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), vol. 23. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  • Kolmogoroff, A.: Zur Umkehrbarkeit der statistischen Naturgesetze. Math. Ann. 113(1), 766–772 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  • Larsen, K.S., Sørensen, M.: Diffusion models for exchange rates in a target zone. Math. Finance 17(2), 285–306 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, C.S.: Ornstein–Uhlenbeck process, Cauchy process, and Ornstein–Uhlenbeck–Cauchy process on a circle. Appl. Math. Lett. 26(9), 957–962 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley Series in Probability and Statistics, 2nd edn. Wiley, Chichester (2000)

  • Mardia, K.V.: Statistics of Directional Data, Probability and Mathematical Statistics, vol. 13. Academic Press, London (1972)

  • Mardia, K.V.: The magic of score matching estimators and approximations for distributions on manifolds and some cutting edge applications to molecular biology. In: Proceedings 61st ISI World Statistics Congress, Marrakech (2017)

  • Mardia, K.V., Frellsen, J.: Statistics of bivariate von Mises distributions. In: Hamelryck, T., Mardia, K.V., Ferkinghoff-Borg, J. (eds.) Bayesian Methods in Structural Bioinformatics. Statistics for Biology and Health. Springer, Berlin (2012)

    Google Scholar 

  • Mardia, K.V., Voss, J.: Some fundamental properties of a multivariate von Mises distribution. Commun. Stat. Theory Methods 43(6), 1132–1144 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia, K.V., Hughes, G., Taylor, C.C., Singh, H.: A multivariate von Mises distribution with applications to bioinformatics. Can. J. Stat. 36(1), 99–109 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • McKee, S., Wall, D.P., Wilson, S.K.: An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys. 126(1), 64–76 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Universitext, Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  • Ozaki, T.: Statistical identification of storage models with application to stochastic hydrology. J. Am. Water Resour. Assoc. 21(4), 663–675 (1985)

    Article  Google Scholar 

  • Papaspiliopoulos, O., Roberts, G.: Importance sampling techniques for estimation of diffusion models. In: Kessler, M., Lindner, A., Sørensen, M. (eds.) Statistical Methods for Stochastic Differential Equations. Monographs on Statistics and Applied Probability, vol. 124. Chapman & Hall/CRC Press, Boca Raton (2012)

    Google Scholar 

  • Roberts, G.O., Stramer, O.: Langevin diffusions and Metropolis–Hastings algorithms. Methodol. Comput. Appl. Probab. 4(4), 337–357 (2003), international Workshop in Applied Probability (Caracas, 2002) (2002)

  • Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales. Cambridge Mathematical Library, vol. 1. Cambridge University Press, Cambridge (2000)

  • Sermaidis, G., Papaspiliopoulos, O., Roberts, G.O., Beskos, A., Fearnhead, P.: Markov chain Monte Carlo for exact inference for diffusions. Scand. J. Stat. 40(2), 294–321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Shoji, I., Ozaki, T.: A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika 85(1), 240–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Soetaert, K., Cash, J., Mazzia, F.: Solving Differential Equations in R. Use R!. Springer, New York (2012)

    Book  MATH  Google Scholar 

  • Sørensen, M.: Efficient estimation for ergodic diffusions sampled at high frequency. Department of Mathematical Sciences, University of Copenhagen, Technical Report (2008)

  • Sørensen, M.: Estimating functions for diffusion-type processes. In: Kessler, M., Lindner, A., Sørensen, M. (eds.) Statistical Methods for Stochastic Differential Equations. Monographs on Statistics and Applied Probability, vol. 124. Chapman & Hall/CRC Press, Boca Raton (2012)

  • Steele, J.M.: Stochastic Calculus and Financial Applications. Applications of Mathematics (New York), vol. 45. Springer, New York (2001)

  • Stroock, D.W.: An Introduction to the Analysis of Paths on a Riemannian Manifold. Mathematical Surveys and Monographs, vol. 74. American Mathematical Society, Providence (2000)

  • Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics, vol. 22. Springer, New York (1995)

  • Wehrly, T.E., Johnson, R.A.: Bivariate models for dependence of angular observations and a related Markov process. Biometrika 67(1), 255–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Yeh, S.Y., Harris, K.D.M., Jupp, P.E.: A drifting Markov process on the circle, with physical applications. Proc R Soc Lond A Mat 469(2156) (2013)

Download references

Acknowledgements

We acknowledge the insightful discussions with John Kent, Jotun Hein, and Michael Golden that led to the key motivation for the manuscript. We are grateful to Sandro Bottaro for the providing the molecular dynamics data used in the illustration. We acknowledge the valuable comments and remarks provided by two anonymous referees and an Associate Editor, which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo García-Portugués.

Additional information

This work is part of the Dynamical Systems Interdisciplinary Network, University of Copenhagen. It was funded by the University of Copenhagen 2016 Excellence Programme for Interdisciplinary Research (UCPH2016-DSIN) and by Project MTM2016-76969-P from the Spanish Ministry of Economy, Industry and Competitiveness, and European Regional Development Fund (ERDF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Portugués, E., Sørensen, M., Mardia, K.V. et al. Langevin diffusions on the torus: estimation and applications. Stat Comput 29, 1–22 (2019). https://doi.org/10.1007/s11222-017-9790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9790-2

Keywords

Mathematics Subject Classification

Navigation