Statistics and Computing

, Volume 28, Issue 6, pp 1201–1213 | Cite as

Dynamic stochastic block models: parameter estimation and detection of changes in community structure

  • Matthew LudkinEmail author
  • Idris Eckley
  • Peter Neal


The stochastic block model (SBM) is widely used for modelling network data by assigning individuals (nodes) to communities (blocks) with the probability of an edge existing between individuals depending upon community membership. In this paper, we introduce an autoregressive extension of the SBM, based on continuous-time Markovian edge dynamics. The model is appropriate for networks evolving over time and allows for edges to turn on and off. Moreover, we allow for the movement of individuals between communities. An effective reversible-jump Markov chain Monte Carlo algorithm is introduced for sampling jointly from the posterior distribution of the community parameters and the number and location of changes in community membership. The algorithm is successfully applied to a network of mice.


Stochastic block model Autoregressive dynamic network Reversible-jump MCMC Continuous-time network 

Supplementary material

11222_2017_9788_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (pdf 1345 KB)


  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Allman, E., Matias, C., Rhodes, J.: Parameters identifiability in a class of random graph mixture models. J. Stat. Plan. Inference 141, 1719–1736 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Altieri, L., Scott, E.M., Cocchi, D., Illian, J.B.: A changepoint analysis of spatio-temporal point processes. Spat. Stat. 14, 197–207 (2015)MathSciNetCrossRefGoogle Scholar
  4. Chatterjee, S., Diaconis, P.: Estimating and understanding exponential random graph models. Ann. Stat. 41(5), 2428–2461 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Corneli, M., Latouche, P., Rossi, F.: Block modelling in dynamic networks with non-homogeneous Poisson processes and exact ICL. Soc. Netw. Anal. Min. 6(1), 55 (2016)CrossRefGoogle Scholar
  6. Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Structural break estimation for nonstationary time series models. J. Am. Stat. Assoc. 101(473), 223–239 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. DuBois, C., Butts, C., Smyth, P.: Stochastic blockmodeling of relational event dynamics. In: Carvalho CM, Ravikumar P (eds) Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, PMLR, Scottsdale, Arizona, USA, Proceedings of Machine Learning Research, vol 31, pp 238–246 (2013)Google Scholar
  8. Fearnhead, P., Liu, Z.: On-line inference for multiple changepoint problems. J. R. Stat. Soc. Ser. B (Statistical Methodology) 69(4), 589–605 (2007)MathSciNetCrossRefGoogle Scholar
  9. Frank, O., Harary, F.: Cluster inference by using transitivity indices in empirical graphs. J. Am. Stat. Assoc. 77(380), 835–840 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fryzlewicz, P.: Wild binary segmentation for multiple change-point detection. Ann. Stat. 42(6), 2243–2281 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Fu, W., Song, L., Xing, EP.: Dynamic mixed membership blockmodel for evolving networks. In: Proceedings of the 26th Annual International Conference on Machine Learning. ACM, pp 329–336 (2009)Google Scholar
  13. Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Guigourès, R., Boullé, M., Rossi, F.: Discovering patterns in time-varying graphs: a triclustering approach. Advances in Data Analysis and Classification (2015)Google Scholar
  15. Haynes, K., Eckley, I.A., Fearnhead, P.: Computationally efficient changepoint detection for a range of penalties. J. Comput. Graph. Stat. 26(1), 134–143 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983)MathSciNetCrossRefGoogle Scholar
  17. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Kolaczyk, E.D.: Statistical Analysis of Network Data: Methods and Models. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  19. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Lopes, P., Block, P., König, B.: Data from: Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks (2016a)Google Scholar
  21. Lopes, P.C., Block, P., König, B.: Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Sci. Rep. 6, 31,790 (2016b)CrossRefGoogle Scholar
  22. Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B (Statistical Methodology) 79(4), 1119–1141 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Matias, C., Rebafka, T., Villers, F.: A semiparametric extension of the stochastic block model for longitudinal networks, working paper or preprintdata (2017)Google Scholar
  24. Matteson, D.S., James, N.A.: A nonparametric approach for multiple change point analysis of multivariate data. J. Am. Stat. Assoc. 109(505), 334–345 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge Books Online (1997)Google Scholar
  26. Picard, F., Robin, S., Lebarbier, E., Daudin, J.J.: A segmentation/clustering model for the analysis of array cgh data. Biometrics 63(3), 758–766 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external cluster evaluation measure. In: EMNLP-CoNLL vol. 7, pp. 410–420 (2007)Google Scholar
  29. Snijders, T.A., Nowicki, K.: Estimation and prediction for stochastic blockmodels for graphs with latent block structure. J. Classif. 14(1), 75–100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)CrossRefzbMATHGoogle Scholar
  31. Xiang, F., Neal, P.: Efficient mcmc for temporal epidemics via parameter reduction. Comput. Stat. Data Anal. 80, 240–250 (2014)MathSciNetCrossRefGoogle Scholar
  32. Xie, Y., Siegmund, D.: Sequential multi-sensor change-point detetion. Ann. Stat. 41, 670–692 (2013)CrossRefzbMATHGoogle Scholar
  33. Xin, L., Zhu, M., Chipman, H.: A continuous-time stochastic block model for basketball networks. Ann. Appl. Stat. 11(2), 553–597 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Xu, K.S., Hero, A.O.: Dynamic stochastic blockmodels for time-evolving social networks. IEEE J. Sel. Top. Signal Process. 8(4), 552–562 (2014)CrossRefGoogle Scholar
  35. Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Detecting communities and their evolutions in dynamic social networks—a Bayesian approach. Mach. Learn. 82(2), 157–189 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.STOR-i Centre for Doctoral Training Science and Technology BuildingLancaster UniversityLancasterUK
  2. 2.STOR-i Centre for Doctoral Training, Department of Mathematics and StatisticsLancaster UniversityLancasterUK
  3. 3.Department of Mathematics and StatisticsLancaster UniversityLancasterUK

Personalised recommendations