Skip to main content
Log in

Anisotropy of Hölder Gaussian random fields: characterization, estimation, and application to image textures

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The characterization and estimation of the Hölder regularity of random fields has long been an important topic of Probability theory and Statistics. This notion of regularity has also been widely used in image analysis to measure the roughness of textures. However, such a measure is rarely sufficient to characterize textures as it does not account for their directional properties (e.g., isotropy and anisotropy). In this paper, we present an approach to further characterize directional properties associated with the Hölder regularity of random fields. Using the spectral density, we define a notion of asymptotic topothesy which quantifies directional contributions of field high-frequencies to the Hölder regularity. This notion is related to the topothesy function of the so-called anisotropic fractional Brownian fields, but is defined in a more generic framework of intrinsic random fields. We then propose a method based on multi-oriented quadratic variations to estimate this asymptotic topothesy. Eventually, we evaluate this method on synthetic data and apply it for the characterization of historical photographic papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abry, P., Clausel, M., Jaffard, S., Roux, S., Vedel, B.: Hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic textures. Rev. Mat. Iberoam 31(1), 313–348 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Abry, P., Roux, S., Wendt, H., Messier, P., et al.: Multiscale anisotropic texture analysis and classification of photographic prints. IEEE Signal Process. Mag. 32(4), 18–27 (2015)

    Article  Google Scholar 

  • Adler, R.: The Geometry of Random Fields, vol. 62. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  • Biermé, H.: Champs aléatoires : autosimilarité, anisotropie et étude directionnelle. Ph.D. thesis, University of Orleans, France (2005)

  • Biermé, H., Benhamou, C., Richard, F.: Parametric estimation for Gaussian operator scaling random fields and anisotropy analysis of bone radiograph textures. In: Pohl, K. (ed.) Proceedings of MICCAI, pp. 13–24. London (2009)

  • Biermé, H., Lacaux, C.: Hölder regularity for operator scaling stable random fields. Stoch. Proc. Appl. 119(7), 2222–2248 (2009)

    Article  MATH  Google Scholar 

  • Biermé, H., Meerschaert, M.M., Scheffler, H.P.: Operator scaling stable random fields. Stoch. Proc. Appl. 117(3), 312–332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Biermé, H., Moisan, M., Richard, F.: A turning-band method for the simulation of anisotropic fractional Brownian field. J. Comput. Gr. Stat. 24(3), 885–904 (2015)

    Article  MathSciNet  Google Scholar 

  • Biermé, H., Richard, F.: Estimation of anisotropic Gaussian fields through Radon transform. ESAIM Probab. Stat. 12(1), 30–50 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Biermé, H., Richard, F.: Analysis of texture anisotropy based on some Gaussian fields with spectral density. In: Bergounioux, M. (ed.) Mathematical Image Processing, pp. 59–73. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Bonami, A., Estrade, A.: Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9, 215–236 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Chilès, J., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, 2nd edn. Wiley, Hoboken (2012)

    Book  MATH  Google Scholar 

  • Clausel, M., Vedel, B.: Explicit construction of operator scaling Gaussian random fields. Fractals 19(01), 101–111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Hochmuth, R.: Wavelet characterizations for anisotropic Besov spaces. Appl. Comput. Harmon. Anal. 12(2), 179–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Istas, J., Lang, G.: Quadratic variations and estimation of the local Holder index of a Gaussian process. Ann. Inst. Henri Poincaré 33(4), 407–436 (1997). Prob.Stat

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, R., Messier, P., Sethares, W., et al.: Pursuing automated classification of historic photographic papers from raking light images. J. Am. Inst. Conserv. 53(3), 159–170 (2014)

    Article  Google Scholar 

  • Mandelbrot, B.B., Van Ness, J.: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Messier, P., Johnson, R., Wilhelm, H., Sethares, W., Klein, A., et al.: Automated surface texture classification of inkjet and photographic media. In: NIP & Digital Fabrication Conference, pp. 85–91. Society for Imaging Science and Technology (2013)

  • Richard, F.: Analysis of anisotropic Brownian textures and application to lesion detection in mammograms. Procedia Environ. Sci. 27, 16–20 (2015)

    Article  Google Scholar 

  • Richard, F.: Some anisotropy indices for the characterization of Brownian textures and their application to breast images. Spat. Stat. 18, 147–162 (2016)

    Article  MathSciNet  Google Scholar 

  • Richard, F.: Tests of isotropy for rough textures of trended images. Stat. Sinica 26(3), 1279–1304 (2016)

    MathSciNet  MATH  Google Scholar 

  • Richard, F., Biermé, H.: Statistical tests of anisotropy for fractional Brownian textures. Application to full-field digital mammography. J. Math. Imaging Vis. 36(3), 227–240 (2010)

    Article  Google Scholar 

  • Roux, S., Clausel, M., Vedel, B., Jaffard, S., Abry, P.: Self-similar anisotropic texture analysis: the hyperbolic wavelet transform contribution. IEEE Trans. Image Process. 22(11), 4353–4363 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Roux, S., Tremblay, N., Borgnat, P., Abry, P., Wendt, H., Messier, P.: Multiscale anisotropic texture unsupervised clustering for photographic paper. In: IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2015)

  • Slimane, M.B., Braiek, H.B.: Directional and anisotropic regularity and irregularity criteria in Triebel wavelet bases. J. Fourier Anal. Appl. 18(5), 893–914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric J. P. Richard.

Appendix: Proofs

Appendix: Proofs

Proof

(Proposition 2) For some positive constant c, we have

$$\begin{aligned} \Delta _A(x)= & {} \vert K_{A,f}(x) - K_{A,f^*}(x) \vert \le c\\&\int _{\vert w \vert \ge A} \vert f(w) - f^*(w) \vert \mathrm{d}w. \end{aligned}$$

Since the field density satisfies Condition (6), we further obtain

$$\begin{aligned} \Delta _A(x)\le & {} c \int _{\vert w \vert \ge A} \vert f(w) - g_{\tau ,\eta }(w) \vert \mathrm{d}w \nonumber \\&\quad + \int _{\vert w \vert \ge A} \vert f^*(w) - g_{\tau ,\eta }(w) \vert \mathrm{d}w, \nonumber \\\le & {} \tilde{c} \int _{\vert w \vert \ge A} \vert w \vert ^{-2H-d-\gamma } \mathrm{d}w\nonumber \\&\quad + \int _{\vert w \vert \ge A} \vert f^*(w) - g_{\tau ,\eta }(w) \vert \mathrm{d}w, \nonumber \\\le & {} o(A^{-2H}) + \int _{\vert w \vert \ge A} \vert f^*(w) - g_{\tau ,\eta }(w) \vert \mathrm{d}w, \end{aligned}$$

as A tends to \(+\infty \).

Now, in directions s of the set \(E_0=\{s,\tau ^*(s)>0\}\), we notice that \(\eta (s)=H\) and \(\tau ^*(s)=\tau (s)\). Hence, \(f^*(w)=g_{\tau ,\eta }(w)\) whenever \(\arg (w)\) is in \(E_0\), \(f^*(w)=g_{\tau ,\eta }(w)\), and 0 otherwise. Consequently, in polar coordinate, we have

$$\begin{aligned} \int _{\vert w \vert \ge A} \vert f^*(w) - g_{\tau ,\eta }(w) \vert \mathrm{d}w= & {} \int _{E_0^c} \int _A^{+\infty } g_{\tau ,\eta }(\rho s) \rho ^{d-1} \mathrm{d}\rho \, \mathrm{d}s, \nonumber \\\le & {} c \int _{E_0^c} \int _A^{+\infty } \rho ^{-2\eta (\theta )-1} \mathrm{d}\rho \, \mathrm{d}s. \end{aligned}$$

Then, let us decompose the integral over \(E_0^c\) into the sum of two integrals, one over a set \(F_\delta =\{s, \eta (s)-H>\delta /2 \}\) defined for \(\delta >0\), and the other over a set \(E_\delta =\{s, 0<\eta (s)-H<\delta /2 \}\). It follows that

$$\begin{aligned} \int _{\vert w \vert \ge A} \vert f^*(w) - g_{\tau ,\eta }(w) \vert \mathrm{d}w = O(A^{-2H}) (A^{-\delta } + \mu (F_\delta )). \end{aligned}$$

where \(\mu (F_\delta )\) is the measure of \(F_\delta \) on the unit sphere of \(\mathbb {R}^d\). But, as shown by Richard (2016b), \(\lim _{\delta \rightarrow 0} \mu (F_\delta ) =0\). Hence, letting \(\delta =\log (A)^{1-\alpha }\) for some \(0<\alpha <1\), we obtain

$$\begin{aligned} \int _{\vert w \vert \ge A} \vert f^*(w) - g_{\tau ,\eta }(w) \vert \mathrm{d}w = o(A^{-2H}). \end{aligned}$$

Consequently, \(\Delta _A(x)= o(A^{-2H})\) as A tends to \(+\infty \). \(\square \)

Proof

(Proposition 3) When the increment field is mono-directional, the expression of \(\varGamma _{H,v}\) of Eq. (16) reduces to

$$\begin{aligned} \varGamma _{H,v}(\theta ) = \int _{\mathbb {R}^+} \vert \hat{v}_1(\rho \cos (\theta )) \vert ^2 \rho ^{-2H-1} \mathrm{d}\rho . \end{aligned}$$

The expression of \(\beta _{H,\tau ^*}\) in Eq. (28) follows from the simple coordinate change \(u=\rho \cos (\theta )\). \(\square \)

Proof

(Theorem 2) We aim at estimating the solution \(\tau ^*\) of a linear system \( L_H \, \, \tau = \beta \) with a random vector

$$\begin{aligned} \tilde{\tau }_\lambda ^*= (B+\lambda R)^{-1} L^T_H\Sigma ^{-1}\tilde{\beta } \end{aligned}$$

where \(B=L^T_H \Sigma ^{-1} L_H\), R is a diagonal matrix, \(\lambda >0\), and \(\tilde{\beta }\) is an unbiased estimate of \(\beta \) of variance \(V(\beta )\).

Since \(\tilde{\beta }\) is unbiased, the expectation of \(\tilde{\tau }_\lambda ^*\) satisfies

$$\begin{aligned} (B+\lambda R) \mathbb {E}(\tilde{\tau }_\lambda ^*) = L^T_H \Sigma ^{-1} \beta . \end{aligned}$$

Moreover, \(B \tau = L^T_H \Sigma ^{-1} \beta \). Hence,

$$\begin{aligned} (B+\lambda R) ( \mathbb {E}(\tilde{\tau }_\lambda ^*)-\tau ^*) = - \lambda R \tau ^*. \end{aligned}$$

Thus,

$$\begin{aligned} \vert \mathbb {E}(\tilde{\tau }_\lambda ^*)-\tau ^*\vert _2 =\vert (B+\lambda R)^{-1} \lambda R \tau ^*\vert _2, \end{aligned}$$

where \(\vert \cdot \vert _2\) denotes the 2-norm. Hence, using norm properties, we get

$$\begin{aligned} \vert \mathbb {E}(\tilde{\tau }_\lambda ^*)-\tau ^*\vert _2 \le \lambda \vert (B+\lambda R)^{-1} \vert _2 \, \vert R \vert _2 \, \vert \tau ^*\vert _2. \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{\vert \mathbb {E}(\tilde{\tau }_\lambda ^*)-\tau ^*\vert _2}{ \vert \tau ^*\vert _2}\le & {} \lambda \vert B^{-1} \vert _2 \, \vert (I+\lambda B^{-1} R)^{-1} \vert _2 \, \vert R \vert _2 \nonumber \\\le & {} \frac{\lambda \vert R \vert _2 }{\nu _-} \, \vert (I+\lambda B^{-1} R)^{-1} \vert _2, \end{aligned}$$
(30)

where \(\nu _-\) is the lowest eigenvalue of B.

Next, we establish a bound for \( \vert (I+\lambda B^{-1} R)^{-1} \vert _2\). For any vector u, we have

$$\begin{aligned} \vert B^{-1} R u \vert ^2 \ge \frac{1}{\nu _+^2} \vert R u \vert ^2 \ge \left( \frac{1}{\nu _+}\right) ^2 \vert u \vert ^2. \end{aligned}$$

Therefore, the lowest eigenvalue of \(B^{-1} R\) is above \(\nu _+^{-1}\). Thus, the one of \(I+\lambda B^{-1} R\) is above \(1+\lambda \nu _+^{-1}\). Consequently,

$$\begin{aligned} \vert (I+\lambda A^{-1} R)^{-1} \vert _2 \le \frac{\nu _+}{(\nu _++\lambda )}. \end{aligned}$$
(31)

Using Eq. (30), we eventually obtain the inequality (24).

Now, we turn to the variance of the estimator. We have

$$\begin{aligned} V(\tilde{\tau }^*_\lambda )= & {} \mathbb {E}\left( (\tilde{\tau }^*_\lambda -\mathbb {E}(\tilde{\tau }^*_\lambda ))(\tilde{\tau }^*_\lambda -\mathbb {E}(\tilde{\tau }^*_\lambda ))^T\right) ) \\= & {} (B+\lambda R)^{-1} B (B+\lambda R)^{-1}. \end{aligned}$$

Hence,

$$\begin{aligned} \mathrm {trace}(V(\tilde{\tau }^*_\lambda )) = \mathrm {trace}\left( (I+ \lambda B^{-1} R)^{-2} B^{-1}\right) . \end{aligned}$$

Moreover, since \(B^{-1}\) is a covariance matrix, any term \(B_{ij}^{-1}\) of \(B^{-1}\) is bounded by \(\sqrt{B_{ii}^{-1}B_{jj}^{-1}}\). Hence, it follows that

$$\begin{aligned} \mathrm {trace}(V(\tilde{\tau }^*_\lambda ))\le & {} \vert (I+ \lambda B^{-1} R)^{-1} \Delta \vert _2^2 \\\le & {} \vert (I+ \lambda B^{-1} R)^{-1} L_H^T \vert _2^2 \, \vert \Delta \vert _2^2, \end{aligned}$$

where \(\Delta \) is a vector formed by terms \(\sqrt{(B)_{ii}^{-1}}\). Noticing that \(\vert \Delta \vert _2^2=\mathrm {trace}(B^{-1})\) and using Eq. (31), we get

$$\begin{aligned} \sqrt{\mathrm {trace}(V(\tilde{\tau }^*_\lambda ))} = \frac{\nu _+}{\nu _++ \lambda } \sqrt{\mathrm {trace}(B^{-1})}. \end{aligned}$$
(32)

Besides, since \(B \tau ^*= L^T_H \Sigma ^{-1} \beta \), we have

$$\begin{aligned} \vert B \vert _2 \, \vert \tau ^*\vert _2 \ge \vert B^{-1/2} \Sigma ^{-1/2} \beta \vert _2 \ge \sqrt{\nu _-} \sqrt{\langle \Sigma ^{-1}\beta ,\beta \rangle _2}. \end{aligned}$$

Hence,

$$\begin{aligned} \frac{1}{\vert \tau ^*\vert _2} \le \frac{\nu _+}{\sqrt{\nu _-} \sqrt{\langle \Sigma ^{-1}\beta ,\beta \rangle _2}}. \end{aligned}$$

Combined with Eqs. (32), (25) follows. \(\square \)

Proof

(Corollary 1) Using expressions of bias and variance in Theorem 2, we clearly see that the function g bounds the relative mean square error. Then, a simple variation analysis of this function suffices to show that it reaches a global minimum at \(\lambda ^*\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, F.J.P. Anisotropy of Hölder Gaussian random fields: characterization, estimation, and application to image textures. Stat Comput 28, 1155–1168 (2018). https://doi.org/10.1007/s11222-017-9785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9785-z

Keywords

Navigation