Advertisement

Statistics and Computing

, Volume 28, Issue 5, pp 989–1007 | Cite as

Multiple change points detection and clustering in dynamic networks

  • Marco Corneli
  • Pierre Latouche
  • Fabrice Rossi
Article

Abstract

The increasing amount of data stored in the form of dynamic interactions between actors necessitates the use of methodologies to automatically extract relevant information. The interactions can be represented by dynamic networks in which most existing methods look for clusters of vertices to summarize the data. In this paper, a new framework is proposed in order to cluster the vertices while detecting change points in the intensities of the interactions. These change points are key in the understanding of the temporal interactions. The model used involves non-homogeneous Poisson point processes with cluster-dependent piecewise constant intensity functions and common discontinuity points. A variational expectation maximization algorithm is derived for inference. We show that the pruned exact linear time method, originally developed for change points detection in univariate time series, can be considered for the maximization step. This allows the detection of both the number of change points and their location. Experiments on artificial and real datasets are carried out, and the proposed approach is compared with related methods.

Keywords

Dynamic networks Non-homogeneous Poisson point processes Stochastic block model Variational EM PELT 

References

  1. Achab, M., Bacry, E., Gaïffas, S., Mastromatteo, I., Muzy, J.F.: Uncovering causality from multivariate Hawkes integrated cumulants. ArXiv preprint arXiv:1607.06333 (2016)
  2. Airoldi, E., Blei, D., Fienberg, S., Xing, E.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008)zbMATHGoogle Scholar
  3. Boullé, M.: Optimum simultaneous discretization with data grid models in supervised classification: a Bayesian model selection approach. Adv. Data Anal. Classif. 3(1), 39–61 (2009)Google Scholar
  4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012). doi: 10.1080/17445760.2012.668546 CrossRefGoogle Scholar
  5. Corneli, M., Latouche, P., Rossi, F.: Block modelling in dynamic networks with non-homogeneous poisson processes and exact ICL. Soc. Netw. Anal. Min. 6(1), 1–14 (2016a). doi: 10.1007/s13278-016-0368-3 CrossRefGoogle Scholar
  6. Corneli, M., Latouche, P., Rossi, F.: Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks. Neurocomputing 192, 81–91 (2016). doi: 10.1016/j.neucom.2016.02.031 CrossRefGoogle Scholar
  7. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Springer, Berlin (2003)zbMATHGoogle Scholar
  8. Daudin, J.J., Picard, F., Robin, S.: A mixture model for random graphs. Stat. Comput. 18(2), 173–183 (2008)MathSciNetCrossRefGoogle Scholar
  9. Dempster, A.P., Rubin, D.B., Laird, N.M.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38. http://www.jstor.org/stable/2984875 (1977)
  10. Dubois, C., Butts, C., Smyth, P.: Stochastic block modelling of relational event dynamics. In: International Conference on Artificial Intelligence and Statistics, Volume 31 of the Journal of Machine Learning Research Proceedings, pp. 238–246 (2013)Google Scholar
  11. Durante, D., Dunson, D.B., et al.: Locally adaptive dynamic networks. Ann. Appl. Stat. 10(4), 2203–2232 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  13. Friel, N., Rastelli, R., Wyse, J., Raftery, A.E.: Interlocking directorates in Irish companies using a latent space model for bipartite networks. In: Proceedings of the National Academy of Sciences, vol. 113, no. 24, pp. 6629–6634. doi: 10.1073/pnas.1606295113. http://www.pnas.org/content/113/24/6629.full.pdf (2016)
  14. Guigourès, R., Boullé, M., Rossi, F.: A triclustering approach for time evolving graphs. In: Co-clustering and Applications, IEEE 12th International Conference on Data Mining Workshops (ICDMW 2012), Brussels, Belgium, pp. 115–122. doi: 10.1109/ICDMW.2012.61 (2012)
  15. Guigourès, R., Boullé, M., Rossi, F.: Discovering patterns in time-varying graphs: a triclustering approach. In: Advances in Data Analysis and Classification, pp. 1–28. doi: 10.1007/s11634-015-0218-6 (2015)
  16. Hanneke, S., Fu, W., Xing, E.P., et al.: Discrete temporal models of social networks. Electron. J. Stat. 4, 585–605 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Hawkes, A.G.: Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Ser. B (Methodol.) 33(3), 438–443 (1971)Google Scholar
  18. Ho, Q., Song, L., Xing, E.P.: Evolving cluster mixed-membership blockmodel for time-evolving networks. In: International Conference on Artificial Intelligence and Statistics, pp. 342–350 (2011)Google Scholar
  19. Hoff, P., Raftery, A., Handcock, M.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Jackson, B., Sargle, J., Barnes, D., Arabhi, S., Alt, A., Giomousis, P., Gwin, E., Sangtrakulcharoen, P., Tan, L., Tsai, T.: An algorithm for optimal partitioning of data on an interval. In: Signal Processing Letters, pp. 105–108 (2005)Google Scholar
  21. Jernite, Y., Latouche, P., Bouveyron, C., Rivera, P., Jegou, L., Lamassé, S.: The random subgraph model for the analysis of an ecclesiastical network in Merovingian Gaul. Ann. Appl. Stat. 8(1), 55–74 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012). doi: 10.1080/01621459.2012.737745 MathSciNetCrossRefzbMATHGoogle Scholar
  23. Kim, M., Leskovec, J.: Nonparametric multi-group membership model for dynamic networks. Adv. Neural Inf. Process. Syst. 25, 1385–1393 (2013)Google Scholar
  24. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Krivitsky, P.N., Handcock, M.S.: A separable model for dynamic networks. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 76(1), 29–46 (2014)MathSciNetCrossRefGoogle Scholar
  26. Latouche, P., Birmelé, E., Ambroise, C.: Overlapping stochastic block models with application to the French political blogosphere. Ann. Appl. Stat., 5(1) 309–336 (2011)Google Scholar
  27. Lewis, P., Shedler, G.: Simulation of nonhomogeneous poison processes by thinning. Naval Res. Logist. Q. 26(3), 403–413 (1979)CrossRefzbMATHGoogle Scholar
  28. Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B 79(4), 1119–1141 (2017)Google Scholar
  29. Matias, C., Rebafka, T., Villers, F.: Estimation and clustering in a semiparametric Poisson process stochastic block model for longitudinal networks. arXiv:1512.07075 e-prints (2015)
  30. Nouedoui, L., Latouche, P.: Bayesian non parametric inference of discrete valued networks. In: 21-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), Bruges, Belgium, pp. 291–296 (2013)Google Scholar
  31. Nowicki, K., Snijders, T.: Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 96(455), 1077–1087 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)CrossRefGoogle Scholar
  33. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007)CrossRefGoogle Scholar
  34. Sarkar, P., Moore, A.W.: Dynamic social network analysis using latent space models. ACM SIGKDD Explor. Newsl. 7(2), 31–40 (2005)CrossRefGoogle Scholar
  35. Sewell, D.K., Chen, Y.: Latent space models for dynamic networks. J. Am. Stat. Assoc. 110(512), 1646–1657 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Sewell, D.K., Chen, Y.: Latent space models for dynamic networks with weighted edges. Soc. Netw. 44, 105–116 (2016)CrossRefGoogle Scholar
  37. Snijders, T.A.: Stochastic actor-oriented models for network change. J. Math. Sociol. 21(1–2), 149–172 (1996)CrossRefzbMATHGoogle Scholar
  38. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). doi: 10.1007/s11222-007-9033-z MathSciNetCrossRefGoogle Scholar
  39. Wang, Y., Wong, G.: Stochastic blockmodels for directed graphs. J. Am. Stat. Assoc. 82, 8–19 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  40. Xing, E.P., Fu, W., Song, L.: A state-space mixed membership blockmodel for dynamic network tomography. Ann. Appl. Stat. 4(2), 535–566 (2010). doi: 10.1214/09-AOAS311 MathSciNetCrossRefzbMATHGoogle Scholar
  41. Xu, H., Farajtabar, M., Zha, H.: Learning granger causality for Hawkes processes. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 1717–1726 (2016)Google Scholar
  42. Xu, K.S., Hero III, A.O.: Dynamic stochastic blockmodels for time-evolving social networks. IEEE J Sel Top Signal Process. 8(4), 552–562 (2014)Google Scholar
  43. Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Detecting communities and their evolutions in dynamic social networks a Bayesian approach. Mach. Learn. 82(2), 157–189 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Zreik, R., Latouche, P., Bouveyron, C.: The dynamic random subgraph model for the clustering of evolving networks. Comput. Stat. 32(2), 501–533 (2016). doi: 10.1007/s00180-016-0655-5 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratoire SAMMUniversité Paris 1 Panthéon-SorbonneParis Cedex 13France

Personalised recommendations