Advertisement

Statistics and Computing

, Volume 26, Issue 4, pp 841–860 | Cite as

Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach

Article

Abstract

While most regression models focus on explaining distributional aspects of one single response variable alone, interest in modern statistical applications has recently shifted towards simultaneously studying multiple response variables as well as their dependence structure. A particularly useful tool for pursuing such an analysis are copula-based regression models since they enable the separation of the marginal response distributions and the dependence structure summarised in a specific copula model. However, so far copula-based regression models have mostly been relying on two-step approaches where the marginal distributions are determined first whereas the copula structure is studied in a second step after plugging in the estimated marginal distributions. Moreover, the parameters of the copula are mostly treated as a constant not related to covariates and most regression specifications for the marginals are restricted to purely linear predictors. We therefore propose simultaneous Bayesian inference for both the marginal distributions and the copula using computationally efficient Markov chain Monte Carlo simulation techniques. In addition, we replace the commonly used linear predictor by a generic structured additive predictor comprising for example nonlinear effects of continuous covariates, spatial effects or random effects and furthermore allow to make the copula parameters covariate-dependent. To facilitate Bayesian inference, we construct proposal densities for a Metropolis–Hastings algorithm relying on quadratic approximations to the full conditionals of regression coefficients avoiding manual tuning. The performance of the resulting Bayesian estimates is evaluated in simulations comparing our approach with penalised likelihood inference, studying the choice of a specific copula model based on the deviance information criterion, and comparing a simultaneous approach with a two-step procedure. Furthermore, the flexibility of Bayesian conditional copula regression models is illustrated in two applications on childhood undernutrition and macroecology.

Keywords

Archimedean copulas Generalised Metropolis–Hastings algorithm Gaussian copula Marginal distribution Penalised splines 

Notes

Acknowledgments

We thank two reviewers for helpful comments on the submitted version. Financial support by the German research foundation via the research training group 1644 and the projects KN 922/4-1/2 is gratefully acknowledged. We would also like to thank Holger Kreft for providing the data on species richness patterns.

Supplementary material

11222_2015_9573_MOESM1_ESM.pdf (148 kb)
Supplementary material 1 (pdf 148 KB)
11222_2015_9573_MOESM2_ESM.zip (75 kb)
Supplementary material 2 (zip 75 KB)
11222_2015_9573_MOESM3_ESM.zip (15.5 mb)
Supplementary material 3 (zip 15919 KB)

References

  1. Acar, E.F., Craiu, R.V., Yao, F.: Dependence calibration in conditional copulas: a nonparametric approach. Biometrics 67, 445–453 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. Acar, E.F., Craiu, V.R., Yao, F.: Statistical testing of covariate effects in conditional copula models. Electron. J. Stat. 7, 2822–2850 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. Belitz, C., Lang, S.: Simultaneous selection of variables and smoothing parameters in structured additive regression models. Comput. Stat. Data Anal. 53, 61–81 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. Belitz, C., Hübner, J., Klasen, S., Lang, S.: Determinants of the socioeconomic and spatial pattern of undernutrition by sex in india: a geoadditive semi-parametric regression approach. In: Kneib, T., Tutz, G. (eds.) Statistical modelling and regression structures, pp. 155–179. Physica-Verlag, Heidelberg (2010)CrossRefGoogle Scholar
  5. Brezger, A., Lang, S.: Generalized structured additive regression based on Bayesian P-splines. Comput. Stat. Data Anal. 50, 967–991 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. Chakraborty, B.: On multivariate quantile regression. J. Stat. Plan. Inference 110, 109–132 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. Chaudhuri, P.: On a geometric notion of quantiles for multivariate data. J. Am. Stat. Assoc. 91, 862–872 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. Craiu, V.R., Sabeti, A.: In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes. J. Multivar. Anal. 110, 106–120 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. Dagum, C.: A new model of personal income distribution: specification and estimation. Econ. Appl. 30, 413–437 (1977)Google Scholar
  10. Fahrmeir, L., Kneib, T.: Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data. Oxford University Press, New York (2011)CrossRefMATHGoogle Scholar
  11. Fahrmeir, L., Kneib, T., Lang, S.: Penalized structured additive regression for space-time data: a Bayesian perspective. Stat. Sin. 14, 731–761 (2004)MathSciNetMATHGoogle Scholar
  12. Fahrmeir, L., Kneib, T., Lang, S., Marx, B.: Regression—Models, Methods and Applications. Springer, Berlin (2013)MATHGoogle Scholar
  13. Fermanian, J., Scaillet, O.: Nonparametric estimation of copulas for time series. J. Risk 5, 25–54 (2003)Google Scholar
  14. Gamerman, D.: Sampling from the posterior distribution in generalized linear mixed models. Stat. Comput. 7, 57–68 (1997)CrossRefGoogle Scholar
  15. Genest, C., Masiello, E., Tribouley, K.: Estimating copula densities through wavelets. Insur. Math. Econ. 44, 170–181 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. Gijbels, I., Veraverbeke, N., Omelka, M.: Conditional copulas, association measures and their applications. Comput. Stat. Data Anal. 55, 1919–1932 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. Gneiting, T., Katzfuss, M.: Probabilistic forecasting. Annu. Rev. Stat. Appl. 1, 125–151 (2014)CrossRefGoogle Scholar
  18. Hafner, C.M., Manner, H.: Dynamic stochastic copula models: estimation, inference and applications. J. Appl. Econom. 27, 269–295 (2012)MathSciNetCrossRefGoogle Scholar
  19. Jetz, W., Kreft, H., Ceballos, G., Mutke, J.: Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. B 276, 269–278 (2009)CrossRefGoogle Scholar
  20. Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall/CRC, London (1997)CrossRefMATHGoogle Scholar
  21. Kauermann, G., Schellhase, C.: Flexible pair-copula estimation in D-vines using bivariate penalized splines. Stat. Comput. 24, 1081–1100 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. Kauermann, G., Schellhase, C., Ruppert, D.: Flexible copula density estimation with penalized hierarchical B-splines. Scand. J. Stat. 40, 685–705 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. Klasen, S., Moradi, A.: The nutritional status of elites in India, Kenya, and Zambia: an appropriate guide for developing reference standards for undernutrition? Technical Report. Sonderforschungsbereich 386: Analyse Diskreter Strukturen. Discussion Paper No. 217. http://epub.ub.uni-muenchen.de/view/subjects/160101.html (2000)
  24. Klein, N., Kneib, T., Lang, S.: Bayesian structured additive distributional regression. Working papers in economics and statistics 2012-23. Faculty of Economics and Statistics, University of Innsbruck (2013). http://eeecon.uibk.ac.at/wopec2/repec/inn/wpaper/2013-23.pdf
  25. Klein, N., Kneib, T., Klasen, S., Lang, S.: Bayesian structured additive distributional regression for multivariate responses. J. R. Stat. Soc. Ser. C (2015a)Google Scholar
  26. Klein, N., Kneib, T., Lang, S.: Bayesian generalized additive models for location, scale and shape for zero-inflated and overdispersed count data. J. Am. Stat. Assoc. 110, 405–419 (2015b)Google Scholar
  27. Lambert, P.: Archimedean copula estimation using Bayesian splines smoothing techniques. Comput. Stat. Data Anal. 51, 6307–6320 (2007)MathSciNetCrossRefMATHGoogle Scholar
  28. Marra, G., Radice, R.: SemiParBIVProbit: Semiparametric Bivariate Probit Modelling. R package version 3.3 (2015)Google Scholar
  29. Omelka, M., Gijbels, I., Veraverbeke, N.: Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing. Ann. Stat. 37, 3023–3058 (2009)MathSciNetCrossRefMATHGoogle Scholar
  30. Patton, A.J.: Modelling asymmetric exchange rate dependence. Int. Econ. Rev. 47, 527–556 (2006)MathSciNetCrossRefGoogle Scholar
  31. Pitt, M., Chan, D., Kohn, R.: Efficient Bayesian inference for Gaussian copula regression models. Biometrika 93, 537–554 (2006)MathSciNetCrossRefMATHGoogle Scholar
  32. Radice, R., Marra, G., Wojtys, M.: Copula regression spline models for binary outcomes. Technical report (submitted) (n.d.)Google Scholar
  33. Rigby, R.A., Stasinopoulos, D.M.: Generalized additive models for location, scale and shape (with discussion). J. R. Stat. Soc. Ser. C (Appl. Stat.) 54, 507–554 (2005)MathSciNetCrossRefMATHGoogle Scholar
  34. Rue, H., Held, L.: Gaussian Markov Random Fields. Chapman & Hall/CRC, New York/Boca Raton (2005)CrossRefMATHGoogle Scholar
  35. Segers, J., van den Akker, R., Werker, B.J.M.: Semiparametric Gaussian copula models: geometry and efficient rank-based estimation. Ann. Stat. 42, 1911–1940 (2014)MathSciNetCrossRefMATHGoogle Scholar
  36. Shen, X., Zhu, Y., Song, L.: LinearB-spline copulas with applications to nonparametric estimation of copulas. J. Comput. Stat. Data Anal. 52, 3806–3819 (2008)MathSciNetCrossRefMATHGoogle Scholar
  37. Sklar, A.: Fonctions de répartition à \(n\) dimensions et leurs marge. Publications de l’Institut de Statistique de l’Université de Paris 8, 229–231 (1959)MathSciNetMATHGoogle Scholar
  38. Wood, S.: mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimations. R package version 1.8-5 (2015)Google Scholar
  39. Wood, S.N.: Generalized Additive Models : An Introduction with R. Chapman & Hall/CRC, New York/Boca Raton (2006)MATHGoogle Scholar
  40. Yee, T.W.: VGAM: Vector Generalized Linear and Additive Models. R package version 0.9-7 (2015)Google Scholar
  41. Zellner, A.: An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. J. Am. Stat. Assoc. 57, 348–368 (1962)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Chair of StatisticsGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations