Sequential Monte Carlo methods for Bayesian elliptic inverse problems


In this article, we consider a Bayesian inverse problem associated to elliptic partial differential equations in two and three dimensions. This class of inverse problems is important in applications such as hydrology, but the complexity of the link function between unknown field and measurements can make it difficult to draw inference from the associated posterior. We prove that for this inverse problem a basic sequential Monte Carlo (SMC) method has a Monte Carlo rate of convergence with constants which are independent of the dimension of the discretization of the problem; indeed convergence of the SMC method is established in a function space setting. We also develop an enhancement of the SMC methods for inverse problems which were introduced in Kantas et al. (SIAM/ASA J Uncertain Quantif 2:464–489, 2014); the enhancement is designed to deal with the additional complexity of this elliptic inverse problem. The efficacy of the methodology and its desirable theoretical properties, are demonstrated for numerical examples in both two and three dimensions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Agapiou, S., Roberts, G.O., Völlmer, S.: Unbiased Monte Carlo: posterior estimation for intractable/infinite-dimensional models (2014). arXiv:1411.7713

  2. Beskos, A., Roberts, G., Stuart, A.M.: Optimal scalings for local Metropolis-Hastings chains on non-product targets in high-dimensions. Ann. Appl. Probab. 19, 863–898 (2009)

    MATH  MathSciNet  Article  Google Scholar 

  3. Beskos, A., Crisan, D., Jasra, A.: On the stability of sequential Monte Carlo methods in high dimensions. Ann. Appl. Probab. 24, 1396–1445 (2014a)

  4. Beskos, A., Crisan, D., Jasra, A., Whiteley, N.P.: Error bounds and normalizing constants for sequential Monte Carlo samplers in high-dimensions. Adv. Appl. Probab. 46, 279–306 (2014b)

  5. Beskos, A., Crisan, D., Jasra, A., Kamatani, K., Zhou, Y.: A stable particle filter in high-dimensions (2014c). arXiv:1412.3501

  6. Beskos, A., Jasra, A., Kantas, N., Thiery, A.: On the convergence of adaptive sequential Monte Carlo methods (2014d). arxiv:1306.6462

  7. Beskos, A., Jasra, A., Law, K.J.H., Tempone, R., Zhou, Y.: Multilevel sequential Monte Carlo samplers (2015). arXiv preprint

  8. Cotter, S., Roberts, G., Stuart, A.M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28, 424–446 (2013)

    MathSciNet  Article  Google Scholar 

  9. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Handbook of Uncertainty Quantification. Springer (2015). arxiv:1302.6989

  10. Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York (2004)

    Book  Google Scholar 

  11. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68, 411–436 (2006)

    MATH  Article  Google Scholar 

  12. Del Moral, P.: Mean Field Simulation for Monte Carlo Integration. Chapman & Hall, London (2013)

    MATH  Google Scholar 

  13. Hairer, M., Stuart, A.M., Vollmer, S.J.: Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24, 2455–2490 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  14. Hoang, V.H., Schwab, C., Stuart, A.M.: Complexity analysis of accelerated MCMC methods for Bayesian inversion. Inverse Prob. 29, 085010 (2013)

    MathSciNet  Article  Google Scholar 

  15. Iglesias, M., Law, K.J.H., Stuart, A.M.: Evaluation of Gaussian approximations for data assimilation for reservoir models. Comput. Geosci. 17, 851–885 (2013)

    MathSciNet  Article  Google Scholar 

  16. Jasra, A., Stephens, D.A., Doucet, A., Tsagaris, T.: Inference for Lévy driven stochastic volatility models using adaptive sequential Monte Carlo. Scand. J. Stat. 38, 1–22 (2011)

    MATH  MathSciNet  Article  Google Scholar 

  17. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Applied Mathematical Sciences, vol. 160. Springer, New York (2005)

    MATH  Google Scholar 

  18. Kantas, N., Beskos, A., Jasra, A.: Sequential Monte Carlo for inverse problems: a case study for the Navier Stokes equation. SIAM/ASA J. Uncertain. Quantif. 2, 464–489 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  19. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22, 237–254 (2006)

    Article  Google Scholar 

  20. McLaughlin, D., Townley, L.R.: A reassessment of the groundwater inverse problem. Water Resour. Res. 32, 1131–1161 (1996)

    Article  Google Scholar 

  21. Neal, R.M.: Annealed importance sampling. Stat. Comput. 11, 125–139 (2001)

    MathSciNet  Article  Google Scholar 

  22. Rebeschini, P., Van Handel, R.: Can local particle filters beat the curse of dimensionality? Ann. Appl. Probab. (to appear)

  23. Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)

    MATH  MathSciNet  Article  Google Scholar 

  24. Schwab, C., Stuart, A.M.: Sparse determinisitc approximation of Bayesian inverse problems. Inverse Prob. 28, 045003 (2012)

    MathSciNet  Article  Google Scholar 

  25. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    MATH  Book  Google Scholar 

  26. Völlmer, S.: Posterior Consistency for Bayesian inverse problems through stability and regression results. Inverse Prob. 29, 125011 (2013)

    Article  Google Scholar 

  27. Whiteley, N.: Sequential Monte Carlo samplers: Error bounds and insensitivity to initial conditions. Stoch. Anal. Appl. 30, 774–798 (2013)

    MathSciNet  Article  Google Scholar 

  28. Zhou, Y., Johansen, A.M., Aston, J.A.D.: Towards automatic model comparison: an adaptive sequential Monte Carlo approach. J. Comput. Graph. Stat. (to appear)

Download references

Author information



Corresponding author

Correspondence to Andrew M. Stuart.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beskos, A., Jasra, A., Muzaffer, E.A. et al. Sequential Monte Carlo methods for Bayesian elliptic inverse problems. Stat Comput 25, 727–737 (2015).

Download citation


  • Inverse problems
  • Elliptic PDEs
  • Groundwater flow
  • Adaptive SMC
  • Markov chain Monte Carlo