Statistics and Computing

, Volume 26, Issue 1–2, pp 171–185 | Cite as

Lazy ABC

Article
  • 382 Downloads

Abstract

Approximate Bayesian computation (ABC) performs statistical inference for otherwise intractable probability models by accepting parameter proposals when corresponding simulated datasets are sufficiently close to the observations. Producing the large quantity of simulations needed requires considerable computing time. However, it is often clear before a simulation ends that it is unpromising: it is likely to produce a poor match or require excessive time. This paper proposes lazy ABC, an ABC importance sampling algorithm which saves time by sometimes abandoning such simulations. This makes ABC more scalable to applications where simulation is expensive. By using a random stopping rule and appropriate reweighting step, the target distribution is unchanged from that of standard ABC. Theory and practical methods to tune lazy ABC are presented and illustrated on a simple epidemic model example. They are also demonstrated on the computationally demanding spatial extremes application of Erhardt and Smith (Comput Stat Data Anal 56:1468–1481, 2012), producing efficiency gains, in terms of effective sample size per unit CPU time, of roughly 3 times for a 20 location dataset, and 8 times for 35 locations.

Keywords

Importance sampling ABC Unbiased likelihood estimators Epidemics Spatial extremes 

References

  1. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Springer, New York (2000)MATHCrossRefGoogle Scholar
  2. Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat., pp. 697–725 (2009)Google Scholar
  3. Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164(3), 1139–1160 (2003)Google Scholar
  4. Beaumont, M.A.: Approximate Bayesian computation in evolution and ecology. Ann. Rev. Ecol. Evol. Syst. 41, 379–406 (2010)CrossRefGoogle Scholar
  5. Beaumont, M.A., Cornuet, J.M., Marin, J.-M., Robert, C.P.: Adaptive approximate Bayesian computation. Biometrika 96(4), 983–990 (2009)Google Scholar
  6. Brooks-Pollock, E., Roberts, G.O., Keeling, M.J.: A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature 511(7508), 228–231 (2014)CrossRefGoogle Scholar
  7. Buzbas, E.O., Rosenberg, N.A.: AABC: approximate approximate Bayesian computation when simulating a large number of data sets is computationally infeasible. http://www.arxiv.org/abs/1301.6282 (2013)
  8. Erhardt, R.J., Smith, R.L.: Approximate Bayesian computing for spatial extremes. Comput. Stat. Data Anal. 56(6), 1468–1481 (2012)MATHMathSciNetCrossRefGoogle Scholar
  9. Fearnhead, P., Papaspiliopoulos, O., Roberts, G.O., Stuart, A.: Random-weight particle filtering of continuous time processes. J. R. Stat. Soc.: Ser. B 72(4), 497–512 (2010)MathSciNetCrossRefGoogle Scholar
  10. Fearnhead, P., Prangle, D.: Constructing summary statistics for approximate Bayesian computation: semi-automatic ABC. J. R. Stat. Soc. Ser. B 74, 419–474 (2012)MathSciNetCrossRefGoogle Scholar
  11. Geweke, J.: Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57(6), 1317–1339 (1989)MATHMathSciNetCrossRefGoogle Scholar
  12. Liu, J.S.: Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput. 6(2), 113–119 (1996)CrossRefGoogle Scholar
  13. Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)MATHMathSciNetCrossRefGoogle Scholar
  14. McKinley, T.J., Cook, A.R., Deardon, R.: Inference in epidemic models without likelihoods. Int. J. Biostat. 5(1), 24 (2009)MathSciNetCrossRefGoogle Scholar
  15. Meeds, E., Welling, M.: GPS-ABC: Gaussian process surrogate approximate Bayesian computation. http://www.arxiv.org/abs/1401.2838 (2014)
  16. Moores, M.T., Drovandi, C.C., Mengersen, K., Robert, C.P.: Pre-processing for approximate Bayesian computation in image analysis. http://www.arxiv.org/abs/1403.4359 (2014)
  17. Ralston, A., Reilly, E.D., Hemmendinger, D. (eds.): Encyclopedia of Computer Science, 4th edn. Wiley, Chichester (2003)Google Scholar
  18. Ribatet, M., Singleton, R., R Core team: Spatialextremes: Modelling Spatial Extremes. R package version 2.0-0 (2013)Google Scholar
  19. Schlather, M.: Models for stationary max-stable random fields. Extremes 5(1), 33–44 (2002)MATHMathSciNetCrossRefGoogle Scholar
  20. Tran, M.-N., Scharth, M., Pitt, M.K., Kohn, R.: Importance sampling squared for Bayesian inference in latent variable models. http://www.arxiv.org/abs/1309.3339 (2014)
  21. Wilkinson, R.D.: Accelerating ABC methods using Gaussian processes. http://arxiv.org/abs/1401.1436 (2014)
  22. Wood, S.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc.: Ser. B 73(1), 3–36 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of ReadingReadingUnited Kingdom

Personalised recommendations