Statistics and Computing

, Volume 26, Issue 1–2, pp 1–14

A unified framework of constrained regression

Article

DOI: 10.1007/s11222-014-9520-y

Cite this article as:
Hofner, B., Kneib, T. & Hothorn, T. Stat Comput (2016) 26: 1. doi:10.1007/s11222-014-9520-y

Abstract

Generalized additive models (GAMs) play an important role in modeling and understanding complex relationships in modern applied statistics. They allow for flexible, data-driven estimation of covariate effects. Yet researchers often have a priori knowledge of certain effects, which might be monotonic or periodic (cyclic) or should fulfill boundary conditions. We propose a unified framework to incorporate these constraints for both univariate and bivariate effect estimates and for varying coefficients. As the framework is based on component-wise boosting methods, variables can be selected intrinsically, and effects can be estimated for a wide range of different distributional assumptions. Bootstrap confidence intervals for the effect estimates are derived to assess the models. We present three case studies from environmental sciences to illustrate the proposed seamless modeling framework. All discussed constrained effect estimates are implemented in the comprehensive R package mboost for model-based boosting.

Keywords

Bivariate constraints Cyclic constraints Functional gradient descent boosting Generalized additive models Monotonic constraints Periodic effects  

Supplementary material

11222_2014_9520_MOESM1_ESM.pdf (300 kb)
Supplementary material 1 (pdf 302 KB)
11222_2014_9520_MOESM2_ESM.zip (47 kb)
Supplementary material 2 (pdf 47 KB)

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Benjamin Hofner
    • 1
  • Thomas Kneib
    • 2
  • Torsten Hothorn
    • 3
  1. 1.Institut für Medizininformatik, Biometrie und EpidemiologieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Lehrstuhl für StatistikGeorg-August-Universität GöttingenGöttingenGermany
  3. 3.Institut für Epidemiologie, Biostatistik und PräventionAbteilung Biostatistik, Universität ZürichZürichSwitzerland

Personalised recommendations