Statistics and Computing

, Volume 25, Issue 1, pp 129–141 | Cite as

Adaptive ABC model choice and geometric summary statistics for hidden Gibbs random fields

  • Julien StoehrEmail author
  • Pierre Pudlo
  • Lionel Cucala


Selecting between different dependency structures of hidden Markov random field can be very challenging, due to the intractable normalizing constant in the likelihood. We answer this question with approximate Bayesian computation (ABC) which provides a model choice method in the Bayesian paradigm. This comes after the work of Grelaud et al. (Bayesian Anal, 4(2):317–336, 2009) who exhibited sufficient statistics on directly observed Gibbs random fields. But when the random field is latent, the sufficiency falls and we complement the set with geometric summary statistics. The general approach to construct these intuitive statistics relies on a clustering analysis of the sites based on the observed colors and plausible latent graphs. The efficiency of ABC model choice based on these statistics is evaluated via a local error rate which may be of independent interest. As a byproduct we derived an ABC algorithm that adapts the dimension of the summary statistics to the dataset without distorting the model selection.


Approximate Bayesian computation Model choice Hidden Gibbs random fields Summary statistics Misclassification rate \(k\)-nearest neighbors 



The three author were financially supported by the Labex NUMEV. We are grateful to Jean-Michel Marin for his constant feedback and support. Some part of the present work was presented at MCMSki 4 in January 2014 and benefited greatly from discussions with the participants during the poster session. We would like to thank Stéphanie Allassonnière and Nathalie Peyrard for fruitful comments and finally the anonymous referrees and the Editors whose valuable comments and insightful suggestions led to an improved version of the paper.


  1. Alfò, M., Nieddu, L., Vicari, D.: A finite mixture model for image segmentation. Stat. Comput. 18(2), 137–150 (2008)CrossRefMathSciNetGoogle Scholar
  2. Baragatti, M., Pudlo, P.: An overview on approximate Bayesian computation. ESAIM 44, 291–299 (2014)CrossRefMathSciNetGoogle Scholar
  3. Beaumont, M.A., Cornuet, J.-M., Marin, J.-M., Robert, C.P.: Adaptive approximate Bayesian computation. Biometrika 96, 983–990 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with Discussion). J. R. Stat. Soc. Ser. B 36(2), 192–236 (1974)zbMATHMathSciNetGoogle Scholar
  5. Besag, J.: Statistical analysis of non-lattice data. Statistician 24, 179–195 (1975)CrossRefGoogle Scholar
  6. Biau, G., Cérou, F., Guyader, A.: New insights into Approximate Bayesian Computation. Annales de l’Institut Henri Poincaré (B) Probabilits et Statistiques, in press (2013)Google Scholar
  7. Blum, M.G.B., Nunes, M.A., Prangle, D., Sisson, S.A.: A comparative review of dimension reduction methods in approximate Bayesian computation. Stat. Sci. 28(2), 189–208 (2013)CrossRefMathSciNetGoogle Scholar
  8. Caimo, A., Friel, N.: Bayesian inference for exponential random graph models. Soc. Netw. 33(1), 41–55 (2011)CrossRefGoogle Scholar
  9. Caimo, A., Friel, N.: Bayesian model selection for exponential random graph models. Soc. Netw. 35(1), 11–24 (2013)CrossRefGoogle Scholar
  10. Cucala, L., Marin, J.-M.: Bayesian inference on a mixture model with spatial dependence. J. Comput. Gr. Stat. 22(3), 584–597 (2013)CrossRefMathSciNetGoogle Scholar
  11. Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  12. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, Volume 31 of Applications of Mathematics (New York). Springer, New York (1996)CrossRefGoogle Scholar
  13. Didelot, X., Everitt, R.G., Johansen, A.M., Lawson, D.J.: Likelihood-free estimation of model evidence. Bayesian Anal. 6(1), 49–76 (2011)CrossRefMathSciNetGoogle Scholar
  14. Druilhet, P., Marin, J.-M.: Invariant HPD credible sets and MAP estimators. Bayesian Anal. 2(4), 681–691 (2007)CrossRefMathSciNetGoogle Scholar
  15. Estoup, A., Lombaert, E., Marin, J.-M., Robert, C., Guillemaud, T., Pudlo, P., Cornuet, J.-M.: Estimation of demo-genetic model probabilities with approximate Bayesian computation using linear discriminant analysis on summary statistics. Mol. Ecol. Ressour. 12(5), 846–855 (2012)CrossRefGoogle Scholar
  16. Everitt, R.G.: Bayesian parameter estimation for latent Markov random fields and social networks. J. Comput. Gr. Stat. 21(4), 940–960 (2012)Google Scholar
  17. Forbes, F., Peyrard, N.: Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1089–1101 (2003)CrossRefGoogle Scholar
  18. François, O., Ancelet, S., Guillot, G.: Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174(2), 805–816 (2006)CrossRefGoogle Scholar
  19. Friel, N.: Evidence and Bayes factor estimation for Gibbs random fields. J. Comput. Gr. Stat. 22(3), 518–532 (2013)CrossRefMathSciNetGoogle Scholar
  20. Friel, N.: Bayesian inference for Gibbs random fields using composite likelihoods. In Proceedings of the 2012 Winter Simulation Conference (WSC), pp. 1–8 (2012)Google Scholar
  21. Friel, N., Rue, H.: Recursive computing and simulation-free inference for general factorizable models. Biometrika 94(3), 661–672 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  22. Friel, N., Pettitt, A.N., Reeves, R., Wit, E.: Bayesian inference in hidden Markov random fields for binary data defined on large lattices. J. Comput. Gr. Stat. 18(2), 243–261 (2009)CrossRefMathSciNetGoogle Scholar
  23. Green, P.J., Richardson, S.: Hidden Markov models and disease mapping. J. Am. Stat. Assoc. 97(460), 1055–1070 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  24. Grelaud, A., Robert, C.P., Marin, J.-M., Rodolphe, F., Taly, J.-F.: ABC likelihood-free methods for model choice in Gibbs random fields. Bayesian Anal. 4(2), 317–336 (2009)CrossRefMathSciNetGoogle Scholar
  25. Hurn, M.A., Husby, O.K., Rue, H.: A Tutorial on Image Analysis. In Spatial Statistics and Computational Methods, volume 173 of Lecture Notes in Statistics pages 87–141. Springer, New York, ISBN 978-0-387-00136-4 (2003)Google Scholar
  26. Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  27. Marin, J.-M., Pillai, N.S., Robert, C.P., Rousseau, J.: Relevant statistics for Bayesian model choice. J. R. Stat. Soc. 73(2), 173 (2013)Google Scholar
  28. Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 100(26), 15324–15328 (2003)CrossRefGoogle Scholar
  29. Mira, A., Møller, J., Roberts, G.O.: Perfect slice samplers. J. R. Stat. Soc. 63(3), 593–606 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  30. Moores, M.T., Hargrave, C.E., Harden, F., Mengersen, K.: Segmentation of cone-beam CT using a hidden Markov random field with informative priors. J. Phys. 489, 012076 (2014)Google Scholar
  31. Moores, M.T., Mengersen, K., Robert, C.P.: Pre-processing for approximate Bayesian computation in image analysis. ArXiv e-prints March (2014)Google Scholar
  32. Prangle, D., Fearnhead, P., Cox, M.P., Biggs, P.J., French, N.P.: Semi-automatic selection of summary statistics for ABC model choice. Stat. Appl. Genet. Mol. Biol. 7, 1–16 (2013)Google Scholar
  33. Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A., Feldman, M.W.: Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16(12), 1791–1798 (1999)CrossRefGoogle Scholar
  34. Reeves, R., Pettitt, A.N.: Efficient recursions for general factorisable models. Biometrika 91(3), 751–757 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  35. Robert, C.P., Cornuet, J.-M., Marin, J.-M., Pillai, N.S.: Lack of confidence in approximate Bayesian computation model choice. Proc. Natl. Acad. Sci. 108(37), 15112–15117 (2011)CrossRefGoogle Scholar
  36. Swendsen, R.H., Wang, J.-S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58(2), 86–88 (1987)CrossRefGoogle Scholar
  37. Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P.: Inferring coalescence times from DNA sequence data. Genetics 145(2), 505–518 (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.I3M UMR CNRS 5149Université Montpellier 2Montpellier Cedex 5France

Personalised recommendations