Abstract
We investigate the use of a large class of discrete random probability measures, which is referred to as the class \(\mathcal {Q}\), in the context of Bayesian nonparametric mixture modeling. The class \(\mathcal {Q}\) encompasses both the the two-parameter Poisson–Dirichlet process and the normalized generalized Gamma process, thus allowing us to comparatively study the inferential advantages of these two well-known nonparametric priors. Apart from a highly flexible parameterization, the distinguishing feature of the class \(\mathcal {Q}\) is the availability of a tractable posterior distribution. This feature, in turn, leads to derive an efficient marginal MCMC algorithm for posterior sampling within the framework of mixture models. We demonstrate the efficacy of our modeling framework on both one-dimensional and multi-dimensional datasets.
This is a preview of subscription content, access via your institution.





Notes
This dataset is included in the MASS package in the R statistical computing environment.
This dataset can be obtained from the University of Copenhagen, Department of Food Science repository of public datasets for multivariate analysis: http://www.models.life.ku.dk/oliveoil.
References
Barrios, E., Lijoi, A., Nieto-Barajas, L.E., Prünster, I.: Modeling with normalized random measure mixture models. Stat. Sci. 28, 313–334 (2013)
Charalambides, C.A.: Combinatorial Methods in Discrete Distributions. Wiley-Interscience, Hoboken (2005)
De Blasi, P., Favaro, S., Lijoi, A., Mena, R.H., Prun̈ster, I., Ruggiero, M.: Are Gibbs-type priors the most natural generalization of the Dirichlet process? IEEE Trans. Pattern Anal. Mach. Intell. (in press) (2013)
De la Mata-Espinosa, P., Bosque-Sendra, J.M., Bro, R., Cuadros-Rodriguez, L.: Discriminating olive and non-olive oils using HPLC-CAD and chemometrics. Anal Bioanal Chem 399, 2083–2092 (2011)
Escobar, M.D.: Estimating normal means with a Dirichlet process prior. J. Am. Stat. Assoc. 89, 268–277 (1994)
Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90, 577–588 (1995)
Favaro, S., Lijoi, A., Prünster, I.: On the stick-breaking representation of normalized inverse Gaussian priors. Biometrika 99, 663–674 (2012)
Favaro, S., Teh, Y.W.: MCMC for normalized random measure mixture models. Stat. Sci. 28, 335–359 (2013)
Favaro, S., Walker, S.G.: Slice sampling \(\sigma \)-stable Poisson–Kingman mixture models. J. Comput. Gr. Stat. 22, 830–847 (2013)
Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)
Gnedin, A., Pitman, J.: Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325, 83–102 (2005)
Griffin, J.E., Walker, S.G.: Posterior simulation of normalized random measure mixtures. J. Comput. Gr. Stat. 20, 241–259 (2009)
Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96, 161–173 (2001)
James, L.F.: Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics (preprint) (2002). arXiv:math/0205093
James, L.F.: Coag–Frag duality for a class of stable Poisson–Kingman mixtures (preprint) (2010). arXiv:math/1008.2420
James, L.F.: Stick-breaking PG\((\alpha ,\zeta )\)-generalized Gamma processes (preprint) (2013). arXiv:math/1308.6570
James, L.F., Lijoi, A., Prünster, I.: Distributions of linear functionals of two parameter Poisson–Dirichlet random measures. Ann. Appl. Probab. 18, 521–551 (2008)
James, L.F., Lijoi, A., Prünster, I.: Posterior analysis for normalized random measures with independent increments. Scand. J. Stat. 36, 76–97 (2009)
Kalli, M., Griffin, J.E., Walker, S.G.: Slice sampling mixture models. Stat. Comput. 21, 93–105 (2011)
Kingman, J.F.C.: Completely random measures. Pac. J. Math. 21, 59–78 (1967)
Kingman, J.F.C.: Random discrete distributions. J. R. Stat. Soc. B 37, 1–22 (1975)
Lijoi, A., Mena, R.H., Prünster, I.: Hierarchical mixture modelling with normalized inverse-Gaussian priors. J. Am. Stat. Assoc. 100, 1278–1291 (2005)
Lijoi, A., Mena, R.H., Prünster, I.: Controlling the reinforcement in Bayesian nonparametric mixture models. J. R. Stat. Soc. B 69, 715–740 (2007)
Lijoi, A., Prünster, I.: Models beyond the Dirichlet process. In: Hjort, N.L., Holmes, C.C., Müller, P., Walker, S.G. (eds.) Bayesian Nonparametrics, pp. 80–136. Cambridge University Press, Cambridge (2010)
Lo, A.I.: On a class of Bayesian nonparametric estimates: I. Density estimates. Ann. Stat. 12, 351–357 (1984)
MacEachern, S.N.: Estimating normal means with a conjugate style Dirichlet process prior. Commun. Stat. Simul. Comput. 23, 727–741 (1994)
Muliere, P., Tardella, L.: Approximating distributions of random functionals of Ferguson–Dirichlet priors. Can. J. Stat. 26, 283–298 (1998)
Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Gr. Stat. 9, 249–265 (2000)
Neal, R.M.: Slice sampling. Ann. Stat. 31, 705–767 (2003)
Nieto-Barajas, L.E., Prünster, I., Walker, S.G.: Normalized random measures driven by increasing additive processes. Ann. Stat. 32, 2343–2360 (2004)
Papaspiliopoulos, O.: A note on posterior sampling from Dirichlet mixture models. Unpublished manuscript (2008)
Papaspiliopoulos, O., Roberts, G.O.: Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika 95, 169–186 (2008)
Perman, M., Pitman, J., Yor, M.: Size-biased sampling of Poisson point processes and excursions. Probab. Theory Relat. Fields 92, 21–39 (1992)
Pitman, J.: Exchangeable and partially exchangeable random partitions. Probab. Theory Relat. Fields 102, 145–158 (1995)
Pitman, J.: Some developments of the Blackwell–MacQueen urn scheme. In: Ferguson, T.S., et al. (eds.) Statistics, Probability and Game Theory: Papers in Honor of David Blackwell. Lecture Notes Monograph Series, vol. 30, pp. 245–267. IMS, Beachwood (1996a)
Pitman, J., Yor, M.: The two parameter Poisson–Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25, 855–900 (1997)
Pitman, J.: Poisson–Kingman partitions. In: Goldstein, D.R. (ed.) Science and Statistics: A Festschrift for Terry Speed. Lecture Notes Monograph Series, pp. 1–34. IMS, Beachwood (2003)
Pitman, J.: Combinatorial stochastic processes. Ecole d’Eté de Probabilités de Saint-Flour XXXII. Lecture Notes in Mathematics N. 1875. Springer, New York (2006)
Regazzini, E., Lijoi, A., Prünster, I.: Distributional results for means of normalized random measures with independent increments. Ann. Stat. 31, 560–585 (2002)
Roeder, K.: Density estimation with confidence sets exemplified by superclusters and voids in the galaxies. J. Am. Stat. Assoc. 36, 45–54 (1990)
Walker, S.G.: Sampling the Dirichlet mixture model with slices. Commun. Stat. Simul. Comput. 36, 45–54 (2007)
Acknowledgments
The authors are grateful to an Associate Editor and two Referees for their valuable remarks and suggestions that have led to a substantial improvement of the paper. We would also like to thank Lancelot F. James for helpful suggestions. Stefano Favaro is supported by the European Research Council (ERC) through StG N-BNP 306406. Yee Whye Teh’s research leading to these results is supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) ERC Grant Agreement No. 617411. Maria Lomeli is supported by the Gatsby Charitable Foundation.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Favaro, S., Lomeli, M. & Teh, Y.W. On a class of \(\sigma \)-stable Poisson–Kingman models and an effective marginalized sampler. Stat Comput 25, 67–78 (2015). https://doi.org/10.1007/s11222-014-9499-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-014-9499-4