Skip to main content
Log in

Flexible pair-copula estimation in D-vines using bivariate penalized splines

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The paper presents a new method for flexible fitting of D-vines. Pair-copulas are estimated semi-parametrically using penalized Bernstein polynomials or constant and linear B-splines, respectively, as spline bases in each knot of the D-vine throughout each level. A penalty induce smoothness of the fit while the high dimensional spline basis guarantees flexibility. To ensure uniform univariate margins of each pair-copula, linear constraints are placed on the spline coefficients and quadratic programming is used to fit the model. The amount of penalizations for each pair-copula is driven by a penalty parameter which is selected in a numerically efficient way. Simulations and practical examples accompany the presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur. Math. Econ. 44(2), 182–198 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Applegate, D.L.: The Traveling Salesman Problem. Prin. Ser. Appl. Math. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  • Bedford, T., Cooke, R.: Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 1(32), 245–268 (2001)

    Article  MathSciNet  Google Scholar 

  • Bedford, T., Cooke, R.M.: Vines: a new graphical model for dependent random variables. Ann. Stat. 30(4), 1031–1068 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Bouezmarni, T., Rombouts, J., Taamouti, A.: Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data. J. Multivar. Anal. 101(1), 1–10 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Brechmann, E.C.: Truncated and simplified regular vines and their applications. Diploma thesis. Master’s thesis, Technische Universität München (2010)

  • Brechmann, E., Czado, C., Aas, K.: Truncated regular vines in high dimensions with applications to financial data. Can. J. Stat. 40(1), 68–85 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Burnham, K., Anderson, D.R.: Model Selection and Multimodel Inference—A Practical Information-Theoretic Approach. Springer, Berlin (2010)

    Google Scholar 

  • Czado, C.: Pair-copula constructions of multivariate copulas. In: Bickel, P., Diggle, P., Fienberg, S., Gather, U., Olkin, I., Zeger, S., Jaworski, P., Durante, F., Härdle, W.K., Rychlik, T. (eds.) Copula Theory and Its Applications. Lecture Notes in Statistics, vol. 198, pp. 93–109. Springer, Berlin (2010)

    Chapter  Google Scholar 

  • de Boor, C.: A Practical Guide to Splines. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  • Doha, E.H., Bhrawy, A.H., Saker, M.A.: On the derivatives of Bernstein polynomials: an application for the solution of high even-order differential equations. Bound. Value Probl. 2011, 829543 (2011)

    Article  MathSciNet  Google Scholar 

  • Efron, B.: Selection criteria for scatterplot smoothers. Ann. Stat. 29, 470–504 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–121 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Frahm, G., Junker, M., Szimayer, A.: Elliptical copulas: applicability and limitations. Stat. Probab. Lett. 63, 275–286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Hahsler, M., Hornik, K.: Tsp—infrastructure for the traveling salesperson problem. J. Stat. Softw. 23(2), 1–21 (2007)

    MathSciNet  Google Scholar 

  • Härdle, W., Okhrin, O.: De copulis non est disputandum—copulae: an overview. AStA Adv. Stat. Anal. 94(1), 1–31 (2009)

    Article  Google Scholar 

  • Hurvich, C.M., Tsai, C.-L.: Regression and time series model selection in small samples. Biometrika 76(2), 297–307 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Jaworski, P., Durante, F., Härdle, W., Rychlik, T.: Copula Theory and Its Applications. Lecture Notes in Statistics, vol. 198. Springer, Berlin (2010). Proceedings

    MATH  Google Scholar 

  • Joe, H.: Families of m-variate distributions with given margins and m(m−1)/2 bivariate dependence parameters. In: Rüschendorf, L., Schweizer, B., Taylor, M. (eds.) Distributions with Fixed Marginals and Related Topics, vol. 28, pp. 120–141. Institute of Mathematical Statistics, Hayward (1996)

    Chapter  Google Scholar 

  • Kakizawa, Y.: Bernstein polynomial probability density estimation. J. Nonparametr. Stat. 16(5), 709–729 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Kauermann, G., Schellhase, C., Ruppert, D.: Flexible copula density estimation with penalized hierarchical B-splines. Scand. J. Stat. (2013). doi:10.1111/sjos.12018

    MATH  MathSciNet  Google Scholar 

  • Kolev, N., Anjos, U., Mendes, B.: Copulas: a review and recent developments. Stoch. Models 22(4), 617–660 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  • Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, Chichester (2006)

    Book  MATH  Google Scholar 

  • Lorentz, G.: Bernstein Polynomials. Mathematical Expositions, vol. 8. University of Toronto Press, Toronto (1953)

    MATH  Google Scholar 

  • McNeil, A., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton Series in Finance. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  • Min, A., Czado, C.: Bayesian model selection for D-vine pair-copula constructions. Can. J. Stat. 39(2), 239–258 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Nelsen, R.: An Introduction to Copulas, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Okhrin, O., Okhrin, Y., Schmid, W.: On the structure and estimation of hierarchical Archimedean copulas. J. Econom. 173(2), 189–204 (2013)

    Article  MathSciNet  Google Scholar 

  • Petrone, S.: Bayesian density estimation using Bernstein polynomials. Can. J. Stat. 27(1), 105–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Qu, L., Yin, W.: Copula density estimation by total variation penalized likelihood with linear equality constraints. Comput. Stat. Data Anal. 56(2), 384–398 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013)

  • Rank, J. (ed.): Copulas. Risk Books, London (2007)

    Google Scholar 

  • Reiss, T., Ogden, R.: Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. B 71(2), 505–523 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Rivlin, T.: An Introduction to the Approximation of Functions. Blaisdell, Waltham (1969)

    MATH  Google Scholar 

  • Rosenkrantz, D., Stearns, R.E., Lewis, P.M. II: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71(2), 319–392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Ruppert, D., Wand, M., Carroll, R.: Semiparametric Regression. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  • Ruppert, D., Wand, M.P., Carroll, R.J.: Semiparametric regression during 2003–2007. Electron. J. Stat. 3, 1193–1256 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Sancetta, A., Satchell, S.: Bernstein copula and its applications to modeling and approximations of multivariate distributions. Econ. Theory 20(3), 535–562 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Savu, C., Trede, M.: Hierarchies of Archimedean copulas. Quant. Finance 10(3), 295–304 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Schall, R.: Estimation in generalized linear models with random effects. Biometrika 78(4), 719–727 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Schellhase, C.: penDvine: flexible pair-copula estimation in D-vines using bivariate penalized splines. R package version 0.2.2 (2013)

  • Schepsmeier, U., Brechmann, E.C.: CDVine: statistical inference of C- and D-vine copulas. R package version 1.1-4 (2011)

  • Searle, S., Casella, G., McCulloch, C.: Variance Components. Wiley, New York (1992)

    Book  MATH  Google Scholar 

  • Shen, X., Zhu, Y., Song, L.: Linear B-spline copulas with applications to nonparametric estimation of copulas. Comput. Stat. Data Anal. 52(7), 3806–3819 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Sklar, A.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8, 229–231 (1959)

    MathSciNet  Google Scholar 

  • Smith, M., Min, A., Almeida, C., Czado, C.: Modeling longitudinal data using a pair-copula construction decomposition of serial dependence. J. Am. Stat. Assoc. 105, 1467–1479 (2010)

    Article  MathSciNet  Google Scholar 

  • Stein, M.L.: A comparison of generalized cross validation and modified maximum likelihood for estimating the parameters of a stochastic process. Ann. Stat. 18, 1139–1157 (1990)

    Article  MATH  Google Scholar 

  • Wahba, G.: A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Stat. 13, 1378–1402 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  • Wand, M.P., Ormerod, J.T.: On semiparametric regression with O’Sullivan penalised splines. Aust. N. Z. J. Stat. 50(2), 179–198 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Wood, S.N.: Generalized Additive Models. Chapman & Hall/CRC Press, London/Boca Raton (2006)

    MATH  Google Scholar 

  • Wood, S.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73(1), 3–36 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schellhase.

Additional information

This article is an extended and improved excerpt of chapter five of the dissertation: Schellhase, C. (2012): Density and Copula Estimation using Penalized Spline Smoothing, Universität Bielefeld. http://nbn-resolving.de/urn:nbn:de:hbz:361-25291040.

Appendices

Appendix A: Quadratic programming

To estimate the pair-copula we make use of the quadprog package in R which allows to solve the quadratic program. We set v=v (i,j|D) and λ=λ (i,j|D) in this section for simplicity. Let therefore \({\mathbf{s}}^{p}_{ij|D}(\boldsymbol{v},\lambda)\) and \({\mathbf{H}}^{p}_{ij|D}(\boldsymbol{v},\lambda)\) denote the first and second order derivatives of (16) yielding

$$\begin{aligned} &{{\mathbf{s}}^{p}_{ij|D}( \boldsymbol{v},\lambda)=\sum_{t=1}^{T} \frac {\boldsymbol{\phi}_K(\hat{u}_{it|D})\otimes\boldsymbol{\phi}_K(\hat {u}_{jt|D})}{\tilde{c}_{ij|D}(\hat{u}_{it|D},\hat {u}_{jt|D},{\boldsymbol{v}})} - \lambda\mathbf{P}\boldsymbol{v}.} \end{aligned}$$
(22)
$$\begin{aligned} &{{\mathbf{H}}^p_{ij|D}( \boldsymbol{v},\lambda)} \\ &{\quad=-\sum_{t=1}^{T} \frac{(\boldsymbol{\phi}_K(\hat{u}_{it|D})\otimes \boldsymbol{\phi}_K(\hat{u}_{jt|D}))(\boldsymbol{\phi}_K(\hat {u}_{it|D})\otimes\boldsymbol{\phi}_K(\hat{u}_{jt|D}))^T}{\tilde {c}_{ij|D}(\hat{u}_{it|D},\hat{u}_{jt|D},{\boldsymbol{v}})}} \\ &{\qquad{} - \lambda \mathbf{P}.} \end{aligned}$$
(23)

We approximate the penalized likelihood \(l^{p}_{ij|D}\) in (16) through a second order Taylor expansion yielding

$$\begin{aligned} l^p_{ij|D} \bigl(\mathbf{v} + \boldsymbol{ \delta}^{(ij|D)}, \lambda \bigr) &\approx l^p_{ij|D} ( \mathbf{v}, \lambda ) \boldsymbol{\delta }^{(ij|D)^T} \mathbf{s}^p_{ij|D} (\mathbf{v}, \lambda ) \\ &\quad{}+ \frac{1}{2} \boldsymbol{\delta}^{(ij|D)^T} \mathbf{H}^p_{ij|D} (\mathbf{v}, \lambda ) \boldsymbol{\delta}^{(ij|D)}, \end{aligned}$$
(24)

where δ (ij|D) is the iteration step selected by maximizing (24) subject to the linear constraints (8), (9) and (12). This optimization is carried out iteratively, by approximating the likelihood as in (24) in each iteration step. To start the algorithm an admissible starting value for v (i,j|D) is required. We use a uniform distribution on the cube [0,1]2 which defines the starting value in unique way.

Appendix B: Penalty matrix for penalizing second order derivatives

We set v=v (i,j|D) and λ=λ (i,j|D) in this section for simplicity. For the marginal penalties in u i and u j in (15) follows with (7) and transformations

$$\begin{aligned} &{\int \biggl(\frac{\partial^2 \tilde{c}_{ij|D}(u_i,u_j)}{(\partial u_i)^2} \biggr)^2 \mathrm{d}u_i\mathrm{d}u_j} \\ &{\quad=\boldsymbol{v}^T \int \biggl[\frac{\partial^2 \phi _{K}(u_{i|D})}{(\partial u_i)^2} \otimes\phi_{K}(u_{j|D}) \biggr]^T \biggl[ \frac{\partial^2\phi_{K}(u_{i|D})}{(\partial u_i)^2}\otimes\phi _{K}(u_{j|D}) \biggr] \mathrm{d}u_i \mathrm{d}u_j \boldsymbol{v}} \\ &{\quad=\boldsymbol{v}^T \underbrace{\int{ \biggl[ \biggl( \frac{\partial^2 \phi _{K}(u_{i|D})}{(\partial u_i)^2} \biggr)^T \frac{\partial^2\phi _{K}(u_{i|D})}{(\partial u_i)^2} \biggr] \mathrm{d}u_i \otimes \bigl[\bigl(\phi _{K}(u_{j|D}) \bigr)^T \phi_{K}(u_{j|D}) \bigr]}}_{:=P_{u_i}} \boldsymbol {v}.} \end{aligned}$$

The integral of the second order derivatives of Bernstein polynomials are calculated easily. The second order derivative of (10) equals (see Doha et al. 2011)

$$\frac{\partial^2 \phi_{Kk}(u)}{(\partial u)^2}=\frac{(K+1)!}{(K-2)!}\sum_{m=\max(0,k+2-K)}^{\min(k,2)}(-1)^{m+2} \binom{2}{m}\phi_{K-2,k-m}(u). $$

This is rewritten as

$$\frac{\partial^2 \phi_{Kk}(u)}{(\partial u)^2}=\bigl(\phi_{K-2,k}(u) B\bigr) w $$

with

$$B= \left (\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1 & -2 & 1 & 0 &\cdots& 0\\ 0 & 1 &-2 & 1 &\ddots& \vdots\\ \vdots& \ddots& \ddots&\ddots& \ddots& 0 \\ 0 & \cdots&0 &1&-2&1 \end{array} \right ) ,\quad B \in \mathbb{R}^{(K-2)\times(K+1)} $$

and \(w=\frac{(K+1)!}{(K-2)!}\). Therefore, the matrix \(P_{z_{i}}\) and \(P_{z_{j}}\) are equivalent to

$$\begin{aligned} &{P_{u_i}=\biggl(wB^T\int\phi_{K-2,k}(u_{i|D}) \phi_{K-2,k}(u_{i|D})\mathrm{d}u_i Bw\biggr)} \\ &{\phantom{P_{u_i}=}{}\otimes \bigl[\bigl(\phi_{K}(u_{j|D})\bigr)^T \phi_{K}(u_{j|D}) \bigr]} \\ &{P_{u_j}= \bigl[\bigl(\phi_{K}(u_{i|D}) \bigr)^T \phi_{K}(u_{i|D}) \bigr]} \\ &{\phantom{P_{u_j}=}{}\otimes \biggl(wB^T\int\phi_{K-2,k}(u_{j|D}) \phi_{K-2,k}(u_{j|D})\mathrm{d}u_j Bw\biggr).} \end{aligned}$$

So, the penalty can be written as quadratic form λ v T P int v where λ is the penalty parameter steering the amount of smoothness and \(P_{int}:=P_{u_{i}}+P_{u_{j}}\).

Appendix C: Marginal likelihood

The prior (18) is degenerated, which needs to be corrected as follows. We decompose v (i,j|D) into the two components \({\boldsymbol{v}}^{(i,j|D)}_{\sim}\) and \({\boldsymbol {v}}^{(i,j|D)}_{\bot}\), respectively, such that \({\boldsymbol {v}}^{(i,j|D)}_{\sim}\) is a normally distributed random vector with non degenerated variance and \({\boldsymbol{v}}^{(i,j|D)}_{\bot}\) are the remaining components treated as parameters, see also Wand and Ormerod (2008). In fact based on a singular value decomposition we have

$$\mathbf{P}=\tilde{\mathbf{U}} \tilde{\boldsymbol{\varLambda}} \tilde{ \mathbf{U}}^T $$

with \(\tilde{\boldsymbol{\varLambda}}\) as diagonal matrix with positive eigenvalues and \(\tilde{\mathbf{U}} \in\mathbb{R}^{(K+1) \times h}\) with corresponding eigenvectors where K+1 is the number of elements in v (i,j|D) and h=K+1−4 is the rank of P. Extending \(\tilde{\mathbf{U}}\) to an orthogonal basis by \(\check{\mathbf{U}}\) gives \({\boldsymbol{v}^{(i,j|D)}_{\sim}}= \tilde{\mathbf{U}}^{T}\boldsymbol{v}^{(i,j|D)}\) with the a priori assumption \({\boldsymbol{v}^{(i,j|D)}_{\sim}} \sim N(0, \lambda^{-1}\tilde{\boldsymbol{\varLambda}}^{-1})\) and with \(\mathbf{U}=(\tilde{\mathbf{U}}, \check{\mathbf{U}})\) as orthogonal basis, we get \(\boldsymbol {v}^{(i,j|D)}_{\bot}={\check{\mathbf{U}}}^{T} \boldsymbol{v}^{(i,j|D)}\). Conditioning on \({\boldsymbol{v}^{(i,j|D)}_{\sim}}\), we have x being distributed according to (6) and with (18) we get the mixed model log likelihood

$$\begin{aligned} &{ l^m_{ij|D}\bigl(\lambda, { \boldsymbol{v}^{(i,j|D)}}^{\bot}\bigr)} \\ &{\quad=\log\int |\lambda\tilde{ \boldsymbol{\varLambda}}|^{\frac{1}{2}} \exp \bigl\{ l^p_{ij|D} \bigl(\boldsymbol{v}^{(i,j|D)}, \lambda\bigr) \bigr\} \mathrm {d} { \boldsymbol{v}^{(i,j|D)}_{\sim}}.} \end{aligned}$$
(25)

The integral can be approximated by a Laplace approximation (see also Rue et al. 2009)

$$\begin{aligned} l^m_{ij|D}\bigl(\lambda,\hat{ \boldsymbol{v}}^{(i,j|D)_{\bot}} \bigr) \approx&\frac{1}{2} \log|\lambda\tilde{ \boldsymbol{\varLambda}}|+ l^p_{ij|D}\bigl({\hat { \boldsymbol{v}}^{(i,j|D)}}, \lambda\bigr) \\ &{}- \frac{1}{2} \log\bigl \vert \tilde{ \mathbf{U}}^T H^p_{ij|D}\bigl({\hat{ \boldsymbol{v}}^{(i,j|D)}},\lambda\bigr) \tilde{\mathbf{U}}\bigr \vert \end{aligned}$$
(26)

where \(\hat{\boldsymbol{v}}^{(i,j|D)}\) denotes the penalized maximum likelihood estimate. We can now differentiate (26) with respect to λ which gives

$$\begin{aligned} \frac{\partial l^m_{ij|D}(\lambda,{\hat{\boldsymbol{v}}^{(i,j|D)}_{\bot }})}{\partial\lambda} &= - \frac{1}{2} {\hat{\boldsymbol{v}}^{(i,j|D)^T}} P \hat{ \boldsymbol{v}}^{(i,j|D)} \\ &\quad{}+ \frac{1}{2 \lambda} \operatorname{tr} \underbrace{ \bigl\{ \bigl( \tilde{\mathbf{U}}^T \mathbf{H}^p_{ij|D}\bigl({ \hat{\boldsymbol{v}}}^{(i,j|D)},\lambda=0\bigr) \tilde{\mathbf{U}} + \lambda \tilde{\boldsymbol{\varLambda}}\bigr)^{-1} \tilde{\mathbf{U}}^T \mathbf{H}^p_{ij|D}\bigl(\hat{ \boldsymbol{v}}^{(i,j|D)},\lambda =0\bigr) \tilde{\mathbf{U}} \bigr \}}_{:=S(\lambda)}. \end{aligned}$$
(27)

Appendix D: Computational aspects

Solving the travelling salesman problem (TSP) in step 2 of Algorithm 1 is a np-hard problem (see Applegate 2006). But the TSP for e.g. p=10 dimensions, faced with the cAIC of \(\binom{10}{2}=45\) pair-copulas, is rapidly solved in R using the R-package TSP (see Hahsler and Hornik 2007). Increasing the dimensionality to p=36, say, the TSP is still rapidly solved, while the R package TSP uses the ‘nearest neighbor and repetitive nearest neighbor algorithms for symmetric and asymmetric TSPs’ (see Rosenkrantz et al. 1977). Calculating the \(\binom{p}{2}\) pair-copulas in advanced to the TSP is done rapidly using parallel computing, while each calculation of a pair-copula takes only some seconds. Therefore, the calculation of high-dimensional D-vines is done in a short period of time. Table 8 presents elapsed system.time in R for bivariate, four-dimensional and ten-dimensional data with N=100 and N=500 from a Frank copula with τ=0.5 and K=14 on Intel® Core 2 Quad CPU Q9550 @ 2.83 GHz.

Table 8 Elapsed system.time for estimation of data from a Frank copula with τ=0.5 and K=14 on Intel® Core 2 Quad CPU Q9550 @ 2.83 GHz

When calculating the optimal λ of a pair-copula, we are faced with the classical problems of the estimation based on Fisher Scoring. Thus, the initial choice of a penalty λ 0 influences the number of iterations to determine the optimal penalty λ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauermann, G., Schellhase, C. Flexible pair-copula estimation in D-vines using bivariate penalized splines. Stat Comput 24, 1081–1100 (2014). https://doi.org/10.1007/s11222-013-9421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-013-9421-5

Keywords

Navigation