Statistics and Computing

, Volume 24, Issue 4, pp 615–632 | Cite as

The algebra of interpolatory cubature formulæ for generic nodes

  • Claudia Fassino
  • Giovanni Pistone
  • Eva Riccomagno


We consider the classical problem of computing the expected value of a real function f of the d-variate random variable X using cubature formulæ. We use in synergy tools from Commutative Algebra for cubature rulæ, from elementary orthogonal polynomial theory and from Probability.


Design of experiments Cubature formulæ Algebraic statistics Orthogonal polynomials Evaluation of expectations 



G. Pistone is supported by de Castro Statistics Initiative, Collegio Carlo Alberto, Moncalieri Italy. E. Riccomagno worked on this paper while visiting the Department of Statistics, University of Warwick, and the Faculty of Statistics at TU-Dortmund on a DAAD grant. Financial support is gratefully acknowledged. The authors thank Prof. H.P. Wynn, Prof. G. Monegato (Politecnico di Torino) and Prof. Dr. Hans Michael Möller (Technische Universität—Dortmund) for their useful suggestions.


  1. CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. Available at
  2. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Undergraduate Texts in Mathematics. Springer, New York (2007) CrossRefzbMATHGoogle Scholar
  3. Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Birkhäuser, Basel (2009) CrossRefzbMATHGoogle Scholar
  4. Fontana, R., Pistone, G., Rogantin, M.P.: Classification of two-level factorial fractions. J. Stat. Plan. Inference 87(1), 149–172 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  5. Gibilisco, P., Riccomagno, E., Rogantin, M.P., Wynn, H.P.: Algebraic and Geometric Methods in Statistics. Cambridge University Press, Cambridge (2010) zbMATHGoogle Scholar
  6. Malliavin, P.: Integration and Probability. Graduate Texts in Mathematics, vol. 157. Springer, New York (1995) zbMATHGoogle Scholar
  7. Möller, H.M.: On the construction of cubature formulae with few nodes using Groebner bases. In: Numerical Integration, Halifax, N.S., 1986. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 203, pp. 177–192. Reidel, Dordrecht (1987) CrossRefGoogle Scholar
  8. Möller, H.M., Buchberger, B.: The construction of multivariate polynomials with preassigned zeros. In: Computer Algebra, Marseille, 1982, pp. 24–31. Springer, Berlin (1982) CrossRefGoogle Scholar
  9. Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Bocconi/Springer-Verlag, Italia, Milan (2011) Google Scholar
  10. Pistone, G., Riccomagno, E., Wynn, H.P.: Algebraic Statistics. Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton (2001) zbMATHGoogle Scholar
  11. Schoutens, W.: Orthogonal polynomials in Stein’s method. J. Math. Anal. Appl. 253(2), 515–531 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  12. Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice-Hall, Englewood Cliffs (1966) zbMATHGoogle Scholar
  13. Walter, G.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004) Google Scholar
  14. Xu, Y.: Polynomial interpolation in several variables, cubature formulæ, and ideals. Adv. Comput. Math. 12(4), 363–376 (2000) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Claudia Fassino
    • 1
  • Giovanni Pistone
    • 2
  • Eva Riccomagno
    • 1
  1. 1.Dipartimento di MatematicaUniversità di GenovaGenovaItaly
  2. 2.Collegio Carlo AlbertoMoncalieriItaly

Personalised recommendations