Baudry, J.P., Raftery, A.E., Celeux, G., Lo, K., Gottardo, R.: Combining mixture components for clustering. J. Comput. Graph. Stat. 9(2), 332–353 (2010). doi:10.1198/jcgs.2010.08111
Article
MathSciNet
Google Scholar
Bérard, C., Martin-Magniette, M.-L., Robin, S.: Mixture model approach to compare two samples of tiling array data: chip-chip and transcriptome. Stat. Appl. Genet. Mol. Biol. 10(1), 1–22 (2011). doi:10.2202/1544-6115.1692
MathSciNet
Google Scholar
Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000). ISSN 0162-8828
Article
Google Scholar
Cappé, O., Moulines, E., Ryden, T.: Inference in Hidden Markov Models. Springer, Berlin (2010)
Google Scholar
Celeux, G., Durand, J.B.: Selecting hidden Markov model state number with cross-validated likelihood. In: Computational Statistics, pp. 541–564 (2008)
Google Scholar
Chatzis, S.P.: Hidden Markov models with nonelliptically contoured state densities. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2297–2304 (2010). ISSN 0162-8828
Article
Google Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)
MATH
MathSciNet
Google Scholar
Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)
Book
MATH
Google Scholar
Fraley, C., Raftery, A.E.: Mclust: software for model-based cluster analysis. J. Classif. 16, 297–306 (1999)
Article
MATH
Google Scholar
Hennig, C.: Methods for merging Gaussian mixture components. Adv. Data Anal. Classif. 4, 3–34 (2010). doi:10.1007/s11634-010-0058-3
Article
MathSciNet
Google Scholar
Keribin, C.: Consistent estimation of the order of mixture models. Sankhya, Ser. A 62, 49–66 (2000). doi:10.2307/25051289
MATH
MathSciNet
Google Scholar
Li, J.: Clustering based on a multilayer mixture model. J. Comput. Graph. Stat. 14(3), 547–568 (2005). doi:10.1198/106186005X59586
Article
Google Scholar
Li, W., Meyer, A., Liu, X.S.: A hidden Markov model for analyzing chip-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics 211, 274–282 (2005)
Article
Google Scholar
Lippman, Z., Gendreland, A.-V., Blackand, M., Vaughn, M.W., et al.: Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004)
Article
Google Scholar
McLachlan, G.J., Peel, D.: In: Finite Mixture Models (2000)
Chapter
Google Scholar
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989). doi:10.1109/5.18626
Article
Google Scholar
Roudier, F., Ahmed, I., Bérard, C., Sarazin, A., Mary-Huard, T., et al.: Integrative epigenomic mapping defines four main chromatin states in arabidopsis. EMBO J. 30, 1928–1938 (2011)
Article
Google Scholar
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)
Article
MATH
Google Scholar
Sun, W., Cai, T.: Large-scale multiple testing under dependence. J. R. Stat. Soc. 71, 393–424 (2009)
Article
MATH
MathSciNet
Google Scholar