Alhamzawi, R., Yu, K., Pan, J.: Prior elicitation in Bayesian quantile regression for longitudinal data. J. Biometr. Biostat. 2, 1–7 (2011)
Article
Google Scholar
Azzalini, A., Capitanio, A.: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc., Ser. B, Stat. Methodol. 65, 367–389 (2003)
MATH
Article
MathSciNet
Google Scholar
Barrodale, I., Roberts, F.D.K.: An efficient algorithm for discrete l
1 linear approximation with linear constraints. SIAM J. Numer. Anal. 15, 603–611 (1978)
MATH
Article
MathSciNet
Google Scholar
Bassett, G., Koenker, R.: Asymptotic theory of least absolute error regression. J. Am. Stat. Assoc. 73, 618–622 (1978)
MATH
Article
MathSciNet
Google Scholar
Boscovich, R.J.: De Litteraria Expeditione per Pontificiam Ditionem, et Synopsis Amplioris Operis, Ac Habentur Plura Ejus Ex Exemplaria Etiam Sensorum Impressa. Bononiesi Scientiarum et Artum Instituto Atque Academia Commentarii, vol. IV (1757)
Google Scholar
Bose, A., Chatterjee, S.: Generalized bootstrap for estimators of minimizers of convex functions. J. Stat. Plan. Inference 117, 225–239 (2003)
MATH
Article
MathSciNet
Google Scholar
Bottai, M., Orsini, N.: A command for Laplace regression. Stata J. (2012, in press)
Bottai, M., Zhang, J.: Laplace regression with censored data. Biom. J. 52, 487–503 (2010)
MATH
Article
MathSciNet
Google Scholar
Buchinsky, M.: Estimating the asymptotic covariance matrix for quantile regression models. A Monte Carlo study. J. Econom. 68, 303–338 (1995)
MATH
Article
MathSciNet
Google Scholar
Canay, I.A.: A simple approach to quantile regression for panel data. Econom. J. 14, 368–386 (2011)
MATH
Article
MathSciNet
Google Scholar
Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)
MATH
Book
Google Scholar
Demidenko, E.: Mixed Models. Theory and Applications. Wiley, Hoboken (2004)
MATH
Book
Google Scholar
DerSimonian, R., Laird, N.: Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188 (1986)
Article
Google Scholar
Doksum, K.: Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Ann. Stat. 2, 267–277 (1974)
MATH
Article
MathSciNet
Google Scholar
Eltoft, T., Kim, T., Lee, T.-W.: On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13, 300–303 (2006)
Article
Google Scholar
Farcomeni, A.: Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat. Comput. 22, 141–152 (2012)
Article
MathSciNet
Google Scholar
Feng, X., He, X., Hu, J.: Wild bootstrap for quantile regression. Biometrika 98, 995–999 (2011)
MATH
Article
MathSciNet
Google Scholar
Fielding, A., Yang, M., Goldstein, H.: Multilevel ordinal models for examination grades. Stat. Model. 3, 127–153 (2003)
MATH
Article
MathSciNet
Google Scholar
Fu, L., Wang, Y.-G.: Quantile regression for longitudinal data with a working correlation model. Comput. Stat. Data Anal. 56, 2526–2538 (2012)
MATH
Article
MathSciNet
Google Scholar
Galvao, A.F.: Quantile regression for dynamic panel data with fixed effects. J. Econom. 164, 142–157 (2011)
Article
MathSciNet
Google Scholar
Galvao, A.F., Montes-Rojas, G.V.: Penalized quantile regression for dynamic panel data. J. Stat. Plan. Inference 140, 3476–3497 (2010)
MATH
Article
MathSciNet
Google Scholar
Genz, A., Keister, B.D.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math. 71, 299–309 (1996)
MATH
Article
MathSciNet
Google Scholar
Geraci, M.: lqmm: Linear quantile mixed models. R package version 1.02 (2012)
Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140–154 (2007)
MATH
Article
Google Scholar
Geraci, M., Salvati, N.: The geographical distribution of the consumption expenditure in Ecuador: estimation and mapping of the regression quantiles. Stat. Appl. 19, 167–183 (2007)
Google Scholar
He, X.: Quantile curves without crossing. Am. Stat. 51, 186–192 (1997)
Google Scholar
He, X., Hu, F.: Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783–795 (2002)
MATH
Article
MathSciNet
Google Scholar
He, X.M., Ng, P., Portnoy, S.: Bivariate quantile smoothing splines. J. R. Stat. Soc., Ser. B, Stat. Methodol. 60, 537–550 (1998)
MATH
Article
MathSciNet
Google Scholar
He, X.M., Portnoy, S.: Some asymptotic results on bivariate quantile splines. J. Stat. Plan. Inference 91, 341–349 (2000)
MATH
Article
MathSciNet
Google Scholar
Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econom. 144, 62–80 (2008)
Article
MathSciNet
Google Scholar
Higham, N.: Computing the nearest correlation matrix—a problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002)
MATH
Article
MathSciNet
Google Scholar
Hinkley, D.V., Revankar, N.S.: Estimation of the Pareto law from underreported data: a further analysis. J. Econom. 5, 1–11 (1977)
MATH
Article
MathSciNet
Google Scholar
Karlsson, A.: Nonlinear quantile regression estimation of longitudinal data. Commun. Stat., Simul. Comput. 37, 114–131 (2008)
MATH
Article
MathSciNet
Google Scholar
Kim, M.-O., Yang, Y.: Semiparametric approach to a random effects quantile regression model. J. Am. Stat. Assoc. 106, 1405–1417 (2011)
MATH
Article
MathSciNet
Google Scholar
Kocherginsky, M., He, X., Mu, Y.: Practical confidence intervals for regression quantiles. J. Comput. Graph. Stat. 14, 41–55 (2005)
Article
MathSciNet
Google Scholar
Koenker, R.: Quantile regression for longitudinal data. J. Multivar. Anal. 91, 74–89 (2004)
MATH
Article
MathSciNet
Google Scholar
Koenker, R.: Quantile Regression. Cambridge University Press, New York (2005)
MATH
Book
Google Scholar
Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)
MATH
Article
MathSciNet
Google Scholar
Koenker, R., Machado, J.A.F.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999)
MATH
Article
MathSciNet
Google Scholar
Koenker, R., Mizera, I.: Penalized triograms: total variation regularization for bivariate smoothing. J. R. Stat. Soc., Ser. B, Stat. Methodol. 66, 145–163 (2004)
MATH
Article
MathSciNet
Google Scholar
Koenker, R., Ng, P., Portnoy, S.: Quantile smoothing splines. Biometrika 81, 673–680 (1994)
MATH
Article
MathSciNet
Google Scholar
Koenker, R., Xiao, Z.J.: Inference on the quantile regression process. Econometrica 70, 1583–1612 (2002)
MATH
Article
MathSciNet
Google Scholar
Kotz, S., Kozubowski, T.J., Podgórski, K.: An asymmetric multivariate Laplace distribution. Tech. Rep. 367, Department of Statistics and Applied Probability, University of California at Santa Barbara (2000)
Kozubowski, T.J., Nadarajah, S.: Multitude of Laplace distributions. Stat. Pap. 51, 127–148 (2010)
MATH
Article
MathSciNet
Google Scholar
Lamarche, C.: Robust penalized quantile regression estimation for panel data. J. Econom. 157, 396–498 (2010)
Article
MathSciNet
Google Scholar
Lee, D., Neocleous, T.: Bayesian quantile regression for count data with application to environmental epidemiology. J. R. Stat. Soc., Ser. C, Appl. Stat. 59, 905–920 (2010)
Article
MathSciNet
Google Scholar
Lee, Y., Nelder, J.A.: Conditional and marginal models: another view. Stat. Sci. 19, 219–228 (2004)
MATH
Article
MathSciNet
Google Scholar
Lehmann, E.L.: Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco (1975)
MATH
Google Scholar
Li, Q., Xi, R., Lin, N.: Bayesian regularized quantile regression. Bayesian Anal. 5, 533–556 (2010)
Article
MathSciNet
Google Scholar
Lipsitz, S.R., Fitzmaurice, G.M., Molenberghs, G., Zhao, L.P.: Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. J. R. Stat. Soc., Ser. C, Appl. Stat. 46, 463–476 (1997)
MATH
Article
Google Scholar
Liu, Y., Bottai, M.: Mixed-effects models for conditional quantiles with longitudinal data. Int. J. Biostat. 5, 1–22 (2009)
MATH
MathSciNet
Google Scholar
Lum, K., Gelfand, A.: Spatial quantile multiple regression using the asymmetric Laplace process. Bayesian Anal. 7, 235–258 (2012)
Article
MathSciNet
Google Scholar
Machado, J.A.F., Santos Silva, J.M.C.: Quantiles for counts. J. Am. Stat. Assoc. 100, 1226–1237 (2005)
MATH
Article
MathSciNet
Google Scholar
Oberhofer, W., Haupt, H.: The asymptotic distribution of the unconditional quantile estimator under dependence. Stat. Probab. Lett. 73, 243–250 (2005)
MATH
Article
MathSciNet
Google Scholar
Parzen, M., Wei, L., Ying, Z.: A resampling method based on pivotal estimating functions. Biometrika 81, 341–350 (1994)
MATH
Article
MathSciNet
Google Scholar
Pinheiro, J., Bates, D.: Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Stat. 4, 12–35 (1995)
Google Scholar
Pinheiro, J.C., Bates, D.M.: Unconstrained parametrizations for variance-covariance matrices. Stat. Comput. 6, 289–296 (1996)
Article
Google Scholar
Pinheiro, J.C., Chao, E.C.: Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. J. Comput. Graph. Stat. 15, 58–81 (2006)
Article
MathSciNet
Google Scholar
Pourahmadi, M.: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86, 677–690 (1999)
MATH
Article
MathSciNet
Google Scholar
Prékopa, A.: Logarithmic concave measures and functions. Acta Sci. Math. 34, 334–343 (1973)
Google Scholar
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2012). ISBN 3-900051-07-0
Google Scholar
Reed, W.: The normal-Laplace distribution and its relatives. In: Balakrishnan, N., Castillo, E., Sarabia Alegria, J.-M. (eds.) Advances in Distribution Theory, Order Statistics, and Inference, pp. 61–74. Birkhäuser Boston, New York (2006)
Chapter
Google Scholar
Reich, B.J., Bondell, H.D., Wang, H.J.: Flexible Bayesian quantile regression for independent and clustered data. Biostatistics 11, 337–352 (2010a)
Article
Google Scholar
Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. (2010b)
Rigby, R., Stasinopoulos, D.: Generalized additive models for location, scale and shape. J. R. Stat. Soc., Ser. C, Appl. Stat. 54, 507–554 (2005)
MATH
Article
MathSciNet
Google Scholar
Robinson, G.: That BLUP is a good thing: the estimation of random effects. Stat. Sci. 6, 15–32 (1991)
MATH
Article
Google Scholar
Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)
MATH
Google Scholar
Rogan, W.J., Dietrich, K.N., Ware, J.H., Dockery, D.W., Salganik, M., Radcliffe, J., Jones, R.L., Ragan, N.B., Chisolm, J.J., Rhoads, G.G.: The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N. Engl. J. Med. 344, 1421–1426 (2001)
Article
Google Scholar
Ruppert, D., Wand, M., Carroll, R.: Semiparametric Regression. Cambridge University Press, New York (2003)
MATH
Book
Google Scholar
Sarkar, D.: Lattice: Multivariate Data Visualization with R. Springer, New York (2008)
Book
Google Scholar
Treatment of Lead-Exposed Children (TLC) Trial Group: Safety and efficacy of succimer in toddlers with blood lead levels of 20–44 μg/dL. Pediatr. Res. 48, 593–599 (2000)
Article
Google Scholar
Wagner, H.M.: Linear programming techniques for regression analysis. J. Am. Stat. Assoc. 54, 206–212 (1959)
MATH
Article
Google Scholar
Wang, J.: Bayesian quantile regression for parametric nonlinear mixed effects models. Stat. Methods Appl. (2012)
Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research areas. Statistician 52, 331–350 (2003)
MathSciNet
Google Scholar
Yu, K., Zhang, J.: A three-parameter asymmetric Laplace distribution and its extension. Commun. Stat., Theory Methods 34, 1867–1879 (2005)
MATH
Article
Google Scholar
Yu, K.M., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437–447 (2001)
MATH
Article
MathSciNet
Google Scholar
Yuan, Y., Yin, G.: Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66, 105–114 (2010)
MATH
Article
MathSciNet
Google Scholar
Zhao, Q.S.: Restricted regression quantiles. J. Multivar. Anal. 72, 78–99 (2000)
MATH
Article
Google Scholar