Skip to main content

Transformed density rejection with inflection points

Abstract

The acceptance-rejection algorithm is often used to sample from non-standard distributions. For this algorithm to be efficient, however, the user has to create a hat function that majorizes and closely matches the density of the distribution to be sampled from. There are many methods for automatically creating such hat functions, but these methods require that the user transforms the density so that she knows the exact location of the transformed density’s inflection points. In this paper, we propose an acceptance-rejection algorithm which obviates this need and can thus be used to sample from a larger class of distributions.

This is a preview of subscription content, access via your institution.

References

  1. Botts, C.: A modified adaptive accept-reject algorithm for univariate densities with bounded support. J. Stat. Comput. Simul. 81(8), 1039–1053 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  2. Dagpunar, J.: An easily implemented generalised inverse Gaussian generator. Commun. Stat. Simul. Comput. 18, 703–710 (1989)

    MathSciNet  Article  Google Scholar 

  3. Devroye, L.: A simple algorithm for generating random variates with a log-concave density. Computing 33(3–4), 247–257 (1984)

    MathSciNet  MATH  Article  Google Scholar 

  4. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)

    MATH  Google Scholar 

  5. Evans, M., Swartz, T.: Random variable generation using concavity properties of transformed densities. J. Comput. Graph. Stat. 7(4), 514–528 (1998)

    Google Scholar 

  6. Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Appl. Stat. 41(2), 337–348 (1992)

    MATH  Article  Google Scholar 

  7. Hörmann, W.: A rejection technique for sampling from T-concave distributions. ACM Trans. Math. Softw. 21(2), 182–193 (1995)

    MATH  Article  Google Scholar 

  8. Hörmann, W., Leydold, J., Derflinger, G.: Automatic Nonuniform Random Variate Generation. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Leydold, J.: Automatic sampling with the ratio-of-uniforms method. ACM Trans. Math. Softw. 26(1), 78–98 (2000). http://doi.acm.org/10.1145/347837.347863

    MATH  Article  Google Scholar 

  10. Leydold, J., Janka, E., Hörmann, W.: Variants of transformed density rejection and correlation induction. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 345–356. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Michael, J., Schucany, W., Haas, R.: Generating random variates using transformations with multiple roots. Am. Stat. 30(2), 88–90 (1976)

    MATH  Google Scholar 

  12. R Development Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2010). URL http://www.R-project.org, ISBN 3-900051-07-0

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josef Leydold.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Botts, C., Hörmann, W. & Leydold, J. Transformed density rejection with inflection points. Stat Comput 23, 251–260 (2013). https://doi.org/10.1007/s11222-011-9306-4

Download citation

Keywords

  • Nonuniform random variate generation
  • Transformed density rejection
  • Inflection points