Akaike, H.: Information theory as an extension of the maximum likelihood principle. In: Petrov, B., Csaki, F. (eds.) Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)
Google Scholar
Bai, J., Perron, P.: Computation and analysis of multiple structural change models. J. Appl. Econ. 18, 1–22 (2003)
Article
Google Scholar
Baraud, Y., Giraud, C., Huet, S.: Gaussian model selection with unknown variance. Ann. Stat. 37(2), 630–672 (2009)
MathSciNet
MATH
Article
Google Scholar
Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 719–725 (2000)
Article
Google Scholar
Biernacki, C., Celeux, G., Govaert, G.: Exact and Monte-Carlo calculation of integrated likelihoods for the latent class model. J. Stat. Plan. Inference 140, 2191–3002 (2010)
MathSciNet
Article
Google Scholar
Birgé, L., Massart, P.: Minimal penalties for Gaussian model selection. Probab. Theory Relat. Fields 138, 33–73 (2007)
MATH
Article
Google Scholar
Braun, R.-K., Braun, J.-V., Müller, H.-G.: Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87, 301–314 (2000)
MathSciNet
MATH
Article
Google Scholar
Carlin, B.P., Chib, S.: Bayesian model choice via Markov chain Monte Carlo methods. J. R. Stat. Soc., Ser. B, Stat. Methodol. 57(3), 473–484 (1995). ArticleType: research-article/Full publication date: 1995/Copyright © 1995 Royal Statistical Society
MATH
Google Scholar
Chen, C., Chan, J., Gerlach, R., Hsieh, W.: A comparison of estimators for regression models with change points (2010). doi:10.1007/s11222-010-9177-0
Congdon, P.: Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Comput. Stat. Data Anal. 50(2), 346–357 (2006)
MathSciNet
MATH
Article
Google Scholar
Congdon, P.: Model weights for model choice and averaging. Stat. Methodol. 4(2), 143–157 (2007)
MathSciNet
Article
Google Scholar
Feder, P.I.: The loglikelihood ratio in segmented regression. Ann. Stat. 3(1), 84–97 (1975)
MathSciNet
MATH
Article
Google Scholar
Godsill, S.J.: On the relationship between Markov chain Monte Carlo methods for model uncertainty. J. Comput. Graph. Stat. 10, 230–248 (2001)
MathSciNet
Article
Google Scholar
Guédon, Y.: Explorating the segmentation space for the assessment of multiple change-points models. Technical report, Preprint INRIA n°6619 (2008)
Husková, M., Kirch, C.: Bootstrapping confidence intervals for the change-point of time series. J. Time Ser. Anal. 29(6), 947–972 (2008)
MathSciNet
MATH
Article
Google Scholar
Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995)
MATH
Article
Google Scholar
Lavielle, M.: Using penalized contrasts for the change-point problem. Signal Process. 85(8), 1501–1510 (2005)
MATH
Article
Google Scholar
Lebarbier, E.: Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Process. 85, 717–736 (2005)
MATH
Article
Google Scholar
Lebarbier, E., Mary-Huard, T.: Une introduction au critère BIC : fondements théoriques et interprétation. J. Soc. Fr. Stat. 147(1), 39–57 (2006)
MathSciNet
Google Scholar
Lee, C.-B.: Estimating the number of change points in a sequence of independent normal random variables. Stat. Probab. Lett. 25(3), 241–8 (1995)
MATH
Article
Google Scholar
Muggeo, V.M.: Estimating regression models with unknown break-points. Stat. Med. 22(19), 3055–3071 (2003)
Article
Google Scholar
Picard, F., Robin, S., Lavielle, M., Vaisse, C., Daudin, J.-J.: A statistical approach for array CGH data analysis. BMC Bioinform. 6(27), 1 (2005). www.biomedcentral.com/1471-2105/6/27
Google Scholar
Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W., Chen, C., Zhai, Y., Dairkee, S., Ljung, B., Gray, J.: High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998)
Article
Google Scholar
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
MATH
Article
Google Scholar
Scott, S.L.: Bayesian methods for hidden Markov models: Recursive computing in the 21st century. J. Am. Stat. Assoc. 97(457), 337–351 (2002). ArticleType: research-article/Full publication date: Mar., 2002/Copyright © 2002 American Statistical Association
MATH
Article
Google Scholar
Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64(4), 583–639 (2002)
MATH
Article
Google Scholar
Toms, J.D., Lesperance, M.L.: Piecewise regression: A tool for identifying ecological thresholds. Ecology 84(8), 2034–2041 (2003)
Article
Google Scholar
Yao, Y.-C.: Estimating the number of change-points via Schwarz’ criterion. Stat. Probab. Lett. 6(3), 181–189 (1988)
MATH
Article
Google Scholar
Zhang, N.R., Siegmund, D.O.: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63(1), 22–32 (2007)
MathSciNet
MATH
Article
Google Scholar