Statistics and Computing

, Volume 22, Issue 2, pp 471–483 | Cite as

The Gaussian rank correlation estimator: robustness properties

  • Kris Boudt
  • Jonathan Cornelissen
  • Christophe CrouxEmail author


The Gaussian rank correlation equals the usual correlation coefficient computed from the normal scores of the data. Although its influence function is unbounded, it still has attractive robustness properties. In particular, its breakdown point is above 12%. Moreover, the estimator is consistent and asymptotically efficient at the normal distribution. The correlation matrix obtained from pairwise Gaussian rank correlations is always positive semidefinite, and very easy to compute, also in high dimensions. We compare the properties of the Gaussian rank correlation with the popular Kendall and Spearman correlation measures. A simulation study confirms the good efficiency and robustness properties of the Gaussian rank correlation. In the empirical application, we show how it can be used for multivariate outlier detection based on robust principal component analysis.


Breakdown Correlation Efficiency Robustness Van der Waerden 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alqallaf, F.A., Konis, K.P., Martin, R.D., Zamar, R.H.: Scalable robust covariance and correlation estimates for data mining. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton (2002) Google Scholar
  2. Alqallaf, F., Van Aelst, S., Yohai, V., Zamar, R.: Propagation of outliers in multivariate data. Ann. Stat. 37, 311–331 (2009) zbMATHCrossRefGoogle Scholar
  3. Atkinson, A.C., Riani, M., Cerioli, A.: Exploring Multivariate Data with the Forward Search. Springer, Berlin (2004) zbMATHGoogle Scholar
  4. Bernholt, T., Fischer, P.: The complexity of computing the MCD-estimator. Theor. Comput. Sci. 326, 383–398 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  5. Branco, J.A., Croux, C., Filzmoser, P., Oliveira, M.R.: Robust canonical correlations: A comparative study. Comput. Stat. 20, 203–229 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  6. Capéraà, P., Guillem, A.I.G.: Taux de resistance des tests de rang d’indépendance. Can. J. Stat. 25, 113–124 (1997) zbMATHCrossRefGoogle Scholar
  7. Christensen, D.: Fast algorithms for the calculation of Kendall’s τ. Comput. Stat. 20, 51–62 (2005) zbMATHCrossRefGoogle Scholar
  8. Critchley, F., Schyns, M., Haesbroeck, G.: A relaxed approach to combinatorial problems in robustness and diagnostics. Stat. Comput. 20, 99–115 (2010) MathSciNetCrossRefGoogle Scholar
  9. Croux, C., Dehon, C.: Influence functions of the Spearman and Kendall correlation measures. Stat. Methods Appl. 19, 497–515 (2010) MathSciNetCrossRefGoogle Scholar
  10. Croux, C., Haesbroeck, G.: Principal component analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies. Biometrika 87, 603–618 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  11. Daudin, J.J., Duby, C., Trecourt, P.: Stability of principal component analysis studied by the bootstrap method. Statistics 19, 241–258 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  12. Davies, P., Gather, U.: Breakdown and groups (with discussion). Ann. Stat. 33, 977–1035 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  13. Devlin, S., Gnanadesikan, R., Kettering, J.: Robust estimation and outlier detection with correlation coefficients. Biometrika 62, 531–545 (1975) zbMATHCrossRefGoogle Scholar
  14. Dominici, D.E.: The inverse of the cumulative standard normal probability function. Integral Transforms Spec. Funct. 14, 281–292 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  15. Filzmoser, P., Fritz, H., Kalcher, K.: pcaPP: Robust PCA by Projection Pursuit. R package version 1.9 (2010) Google Scholar
  16. Grize, Y.: Robustheitseigenschaften von Korrelations-schätzungen. Ph. D. thesis, ETH Zürich (1978) Google Scholar
  17. Hájek, J., Sidak, Z.: Theory of Rank Tests. Academic Press, New York (1967) zbMATHGoogle Scholar
  18. Hubert, M., Rousseeuw, P., Vanden Branden, K.: ROBPCA: a new approach to robust principal component analysis. Technometrics 47, 64–79 (2005) MathSciNetCrossRefGoogle Scholar
  19. Iman, R., Conover, W.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat., Simul. Comput. 11, 311–334 (1982) zbMATHCrossRefGoogle Scholar
  20. Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–93 (1938) MathSciNetzbMATHGoogle Scholar
  21. Khan, J., Van Aelst, S., Zamar, R.: Robust linear model selection based on least angle regression. J. Am. Stat. Assoc. 480, 1289–1299 (2007) CrossRefGoogle Scholar
  22. Maronna, R., Zamar, R.: Robust estimates of location and dispersion of high-dimensional datasets. Technometrics 44, 307–317 (2002) MathSciNetCrossRefGoogle Scholar
  23. Maronna, R.A., Martin, R.D., Yohai, V.J.: Robust Statistics: Theory and Methods. Wiley, Chichester (2006) zbMATHCrossRefGoogle Scholar
  24. Rousseeuw, P., Van Driessen, K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212–223 (1999) CrossRefGoogle Scholar
  25. Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., Maechler, M.: Robustbase: Basic Robust Statistics. R package version 0.5-0-1 (2009) Google Scholar
  26. Spearman, C.: General intelligence objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904) CrossRefGoogle Scholar
  27. Van Aelst, S., Vandervieren, E., Willems, G.: Robust principal component analysis based on pairwise correlation estimators. In: Proceedings of the 19th International Conference on Computational Statistics, Paris, pp. 573–580 (2010) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kris Boudt
    • 1
    • 2
  • Jonathan Cornelissen
    • 1
  • Christophe Croux
    • 1
    Email author
  1. 1.Faculty of Business and EconomicsK.U.LeuvenLeuvenBelgium
  2. 2.Lessius University CollegeAntwerpBelgium

Personalised recommendations