Skip to main content
Log in

Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We consider optimal temperature spacings for Metropolis-coupled Markov chain Monte Carlo (MCMCMC) and Simulated Tempering algorithms. We prove that, under certain conditions, it is optimal (in terms of maximising the expected squared jumping distance) to space the temperatures so that the proportion of temperature swaps which are accepted is approximately 0.234. This generalises related work by physicists, and is consistent with previous work about optimal scaling of random-walk Metropolis algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrieu, C., Moulines, E.: On the ergodicity properties of some Markov chain Monte Carlo algorithms. Ann. Appl. Probab. 44(2), 458–475 (2007)

    Google Scholar 

  • Andrieu, C., Robert, C.P.: Controlled MCMC for optimal sampling. Preprint (2001)

  • Atchade, Y.F.: An adaptive version of the Metropolis adjusted Langevin algorithm with a truncated drift. Methodol. Comput. Appl. Probab. 8(2), 235–254 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Atchade, Y.F., Liu, J.S.: The Wang-Landau algorithm in general state spaces: applications and convergence analysis. Stat. Sin. 20, 209–233 (2010)

    MATH  MathSciNet  Google Scholar 

  • Cooke, B., Schmidler, S.C.: Preserving the Boltzmann ensemble in replica-exchange molecular dynamics. J. Chem. Phys. 129, 164112 (2008)

    Article  Google Scholar 

  • Delmas, J.-F., Jourdain, B.: Does waste recycling really improve the multi-proposal Metropolis-Hastings algorithm? An analysis based on control variates. J. Appl. Probab. 46(4), 938–959 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Earl, D.J., Deem, M.W.: Parallel tempering: theory, applications, and new perspectives. J. Phys. Chem. B 108, 6844 (2005)

    Article  Google Scholar 

  • Frenkel, D.: Waste-recycling Monte Carlo. In: Computer Simulations in Condensed Matter: From Materials to Chemical Biology. Lecture Notes in Physics, vol. 703. Springer, Berlin (2006)

    Google Scholar 

  • Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pp. 156–163 (1991)

  • Glynn, P.W., Heidelberger, P.: Analysis of parallel, replicated simulations under a completion time constraint. ACM Trans. Model. Simul. 1, 3–23 (1991)

    Article  MATH  Google Scholar 

  • Green, P.J., Mira, A.: Delayed rejection in reversible jump Metropolis-Hastings. Biometrika 88(3), 1035–1053 (2001)

    MATH  MathSciNet  Google Scholar 

  • Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  • Iba, Y.: Extended ensemble Monte Carlo. Int. J. Mod. Phys. C 12(5), 623–656 (2001)

    Article  Google Scholar 

  • Kofke, D.A.: On the acceptance probability of replica-exchange Monte Carlo trials. J. Chem. Phys. 117, 6911 (2002). Erratum: J. Chem. Phys. 120, 10852

    Article  Google Scholar 

  • Kofke, D.A.: Comment on “the incomplete beta function law for parallel tempering sampling of classical canonical systems”. J. Chem. Phys. 121, 1167 (2004)

    Article  Google Scholar 

  • Kone, A., Kofke, D.A.: Selection of temperature intervals for parallel-tempering simulations. J. Chem. Phys. 122, 206101 (2005)

    Article  Google Scholar 

  • Lee, A., Yau, C., Giles, M.B., Doucet, A., Holmes, C.C.: On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo Methods. Preprint (2009)

  • Madras, N., Zheng, Z.: On the swapping algorithm. Random Struct. Algorithms 22, 66–97 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19, 451–458 (1992)

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953)

    Article  Google Scholar 

  • Predescu, C., Predescu, M., Ciobanu, C.V.: The incomplete beta function law for parallel tempering sampling of classical canonical systems. J. Chem. Phys. 120, 4119 (2004)

    Article  Google Scholar 

  • Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110–120 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. B 60, 255–268 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16, 351–367 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Comput. Graph. Stat. 18(2), 349–367 (2009)

    Article  MathSciNet  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive MCMC. J. Appl. Probab. 44, 458–475 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenthal, J.S.: Parallel computing and Monte Carlo algorithms. Far East J. Theoret. Stat. 4, 207–236 (2000)

    MATH  Google Scholar 

  • Woodard, D.B., Schmidler, S.C., Huber, M.: Conditions for rapid mixing of parallel and simulated tempering on multimodal distributions. Ann. Appl. Probab. 19, 617–640 (2009a)

    Article  MATH  MathSciNet  Google Scholar 

  • Woodard, D.B., Schmidler, S.C., Huber, M.: Sufficient conditions for torpid mixing of parallel and simulated tempering. Electron. J. Probab. 14, 780–804 (2009b)

    MATH  MathSciNet  Google Scholar 

  • Zheng, Z.: On swapping and simulated tempering algorithms. Stoch. Process. Their Appl. 104, 131–154 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Rosenthal.

Additional information

J.S. Rosenthal is partially supported by NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atchadé, Y.F., Roberts, G.O. & Rosenthal, J.S. Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo. Stat Comput 21, 555–568 (2011). https://doi.org/10.1007/s11222-010-9192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-010-9192-1

Keywords

Navigation