Skip to main content
Log in

Inferring multiple graphical structures

  • Published:
Statistics and Computing Aims and scope Submit manuscript


Gaussian Graphical Models provide a convenient framework for representing dependencies between variables. Recently, this tool has received a high interest for the discovery of biological networks. The literature focuses on the case where a single network is inferred from a set of measurements. But, as wetlab data is typically scarce, several assays, where the experimental conditions affect interactions, are usually merged to infer a single network. In this paper, we propose two approaches for estimating multiple related graphs, by rendering the closeness assumption into an empirical prior or group penalties. We provide quantitative results demonstrating the benefits of the proposed approaches. The methods presented in this paper are embeded in the R package simone from version 1.0-0 and later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Ambroise, C., Chiquet, J., Matias, C.: Inferring sparse Gaussian graphical models with latent structure. Electron. J. Stat. 3, 205–238 (2009)

    Article  MathSciNet  Google Scholar 

  • Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008)

    Article  Google Scholar 

  • Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485–516 (2008)

    MathSciNet  Google Scholar 

  • Baxter, J.: A model of inductive bias learning. J. Artif. Int. Res. 12(1), 149–198 (2000)

    MATH  MathSciNet  Google Scholar 

  • Bengio, S., Mariéthoz, J., Keller, M.: The expected performance curve. In: ICML Workshop on ROC Analysis in Machine Learning (2005)

  • Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  • Charbonnier, C., Chiquet, J., Ambroise, C.: Weighted-lasso for structured network inference from time course data. Stat. Appl. Genet. Mol. Biol. 9(1) (2010)

  • Drummond, C., Holte, R.C.: Cost curves: An improved method for visualizing classifier performance. Mach. Learn. 65(1), 95–130 (2006)

    Article  Google Scholar 

  • Efron, B.: The future of indirect evidence. Tech. Rep. 250, Division of Biostatistics. Stanford University (2009)

  • Friedman, J.H.: Regularized discriminant analysis. J Am. Stat. Assoc. 84(405), 165–175 (1989)

    Article  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  MATH  Google Scholar 

  • Kim, Y., Kim, J., Kim, Y.: Blockwise sparse regression. Stat. Sin. 16, 375–390 (2006)

    MATH  Google Scholar 

  • Kolar, M.K., Le Song, A.A., Xing, E.P.: Estimating time-varying networks. Ann. Appl. Stat. (2009)

  • Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34(3), 1436–1462 (2006)

    Article  MATH  Google Scholar 

  • Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Osborne, M.R., Presnell, B., Turlach, B.A.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389–403 (2000a)

    Article  MATH  MathSciNet  Google Scholar 

  • Osborne, M.R., Presnell, B., Turlach, B.A.: On the LASSO and its dual. J. Comput. Graph. Stat. 9(2), 319–337 (2000b)

    Article  MathSciNet  Google Scholar 

  • Ravikumar, P., Wainwright, M.J., Lafferty, J.: High-dimensional Ising model selection using 1-regularized logistic regression. Ann. Stat. 38, 1287–1319 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Rocha, G.V., Zhao, P., Yu, B.: A path following algorithm for sparse pseudo-likelihood inverse covariance estimation (splice) (2008)

  • Roth, V., Fischer, B.: The group-lasso for generalized linear models: uniqueness of solutions and efficent algorithms. In: International Conference on Machine Learning (2008)

  • Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D., Nolan, G.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005)

    Article  Google Scholar 

  • Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1) (2005)

  • Toh, H., Horimoto, K.: Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 18, 287–297 (2002)

    Article  Google Scholar 

  • Villers, F., Schaeffer, B., Bertin, C., Huet, S.: Assessing the validity domains of graphical Gaussian models in order to infer relationships among components of complex biological systems. Stat. Appl. Genet. Mol. Biol. 7(2) (2008)

  • Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc., Ser. B: Stat. Methodol. 68(1), 49–67 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Yuan, M., Lin, Y.: Model selection and estimation in the Gaussian graphical model. Biometrika 94(1), 19–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Julien Chiquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiquet, J., Grandvalet, Y. & Ambroise, C. Inferring multiple graphical structures. Stat Comput 21, 537–553 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: