Skip to main content
Log in

Stochastic boosting algorithms

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this article we develop a class of stochastic boosting (SB) algorithms, which build upon the work of Holmes and Pintore (Bayesian Stat. 8, Oxford University Press, Oxford, 2007). They introduce boosting algorithms which correspond to standard boosting (e.g. Bühlmann and Hothorn, Stat. Sci. 22:477–505, 2007) except that the optimization algorithms are randomized; this idea is placed within a Bayesian framework. We show that the inferential procedure in Holmes and Pintore (Bayesian Stat. 8, Oxford University Press, Oxford, 2007) is incorrect and further develop interpretational, computational and theoretical results which allow one to assess SB’s potential for classification and regression problems. To use SB, sequential Monte Carlo (SMC) methods are applied. As a result, it is found that SB can provide better predictions for classification problems than the corresponding boosting algorithm. A theoretical result is also given, which shows that the predictions of SB are not significantly worse than boosting, when the latter provides the best prediction. We also investigate the method on a real case study from machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods (with discussion). J. R. Stat. Soc. B 72, 1–33 (2010)

    Google Scholar 

  • Breiman, L.: Arcing classifiers (with discussion). Ann. Stat. 26, 801–849 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  • Bühlmann, P., Hothorn, T.: Boosting algorithms: Regularization, prediction and model fitting. Stat. Sci. 22, 477–505 (2007)

    Article  Google Scholar 

  • Bühlmann, P., Yu, B.: Boosting with the \(\mathbb{L}_{2}\) loss: regression and classification. J. Am. Stat. Ass 98, 324–339 (2003)

    Article  MATH  Google Scholar 

  • Chipman, H., George, E., McCulloch, R.E.: BART: Bayesian additive regression trees. Technical Report, Wharton School (2008)

  • Del Moral, P.: Feynman-Kac Formulae. Genealogical and Interacting Particle Systems. Springer, New York (2004)

    MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68, 411–436 (2006)

    MATH  Google Scholar 

  • Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  • Doucet, A., De Freitas, J.F.G., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    MATH  Google Scholar 

  • Doucet, A., Briers, M., Sénécal, S.: Efficient block sampling strategies for sequential Monte Carlo methods. J. Comput. Graph. Stat. 15, 693–711 (2006)

    Article  Google Scholar 

  • Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. 2nd Europ. Conf. Computat. Learn. Theory. Springer, Berlin (1995)

    Google Scholar 

  • Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. 13th Intern. Conf. Mach. Learn. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  • Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Freund, Y., Mansour, Y., Schapire, R.E.: Generalization bounds for averaged classifiers. Ann. Stat. 32, 1698–1722 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, J.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002)

    Article  MATH  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting (with discussion). Ann. Stat. 28, 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gneiting, T., Balabdaoui, F., Raftery, A.E.: Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. B 69, 243–268 (2007)

    MathSciNet  MATH  Google Scholar 

  • Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Hibon, M., Evgeniou, T.: To combine or not to combine: selecting among forecasts and their combinations. Int. J. Forecast. 21, 15–24 (2005)

    Article  Google Scholar 

  • Holmes, C.C., Pintore, A.: Bayesian relaxation: Boosting, the lasso and other L α -norms (with discussion). In: Bayarri, S., Berger, J.O., Bernardo, J.M., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (eds.) Bayesian Stat. 8, pp. 253–282. Oxford University Press, Oxford (2007)

    Google Scholar 

  • Jiang, W.: Process consistency for AdaBoost. Ann. Stat. 32, 13–29 (2004)

    Article  MATH  Google Scholar 

  • Mease, D., Wyner, A.: Evidence contrary to the statistical view of boosting (with discussion). J. Mach. Learn. Res. 9, 131–201 (2008)

    Google Scholar 

  • Nakada, Y., Mouri, Y., Hongo, Y., Matsumoto, T.: Gibbsboost: a boosting algorithm using a sequential Monte Carlo approach. In: Proc. IEEE Sig. Proc. Work (2006)

  • Nobile, A.: Bayesian Analysis of Finite Mixture Distributions. Ph.D. Thesis, Carnegie Mellon University (1994)

  • Snoek, G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeudlders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proc. ACM Multimedia (2006)

  • Zhang, T., Yu, B.: Boosting with early stopping: Convergence and consistency. Ann. Stat. 33, 1518–1579 (2005)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Jasra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasra, A., Holmes, C.C. Stochastic boosting algorithms. Stat Comput 21, 335–347 (2011). https://doi.org/10.1007/s11222-010-9173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-010-9173-4

Keywords

Navigation