Statistics and Computing

, Volume 21, Issue 2, pp 275–288 | Cite as

Fast simulation of truncated Gaussian distributions

  • Nicolas ChopinEmail author


We consider the problem of simulating a Gaussian vector X, conditional on the fact that each component of X belongs to a finite interval [a i ,b i ], or a semi-finite interval [a i ,+∞). In the one-dimensional case, we design a table-based algorithm that is computationally faster than alternative algorithms. In the two-dimensional case, we design an accept-reject algorithm. According to our calculations and numerical studies, the acceptance rate of this algorithm is bounded from below by 0.5 for semi-finite truncation intervals, and by 0.47 for finite intervals. Extension to three or more dimensions is discussed.

Accept-reject Markov chain Monte Carlo Tail Gaussian distribution Truncated Gaussian distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table. Dover, New York (1965) Google Scholar
  2. Ahrens, J.: Sampling from general distributions by suboptimal division of domains. Grazer Math. Ber. 20(319) (1993) Google Scholar
  3. Ahrens, J.: A one-table method for sampling from continuous and discrete distributions. Computing 54(2), 127–146 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  4. Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88(422), 669–79 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  5. Blair, J., Edwards, C., Johnson, J.: Rational Chebyshev approximations for the inverse of the error function. Math. Comput. (1976) Google Scholar
  6. Chen, M., Deely, J.: Bayesian analysis for a constrained linear multiple regression problem for predicting the new crop of apples. J. Agric. Biol. Environ. Stat. 1(4), 467–489 (1996) CrossRefMathSciNetGoogle Scholar
  7. Chib, S.: Bayes inference in the Tobit censored regression model. J. Econom. 51(1–2), 79–99 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  8. Chib, S., Greenberg, E.: Analysis of multivariate probit models. Biometrika 85(2), 347 (1998) zbMATHCrossRefGoogle Scholar
  9. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986) zbMATHGoogle Scholar
  10. Evans, M., Swartz, T.: Random variable generation using concavity properties of transformed densities. J. Comput. Graph. Stat. 7(4), 514–528 (1998) CrossRefGoogle Scholar
  11. Fernández, P., Ferrari, P., Grynberg, S.: Perfectly random sampling of truncated multinormal distributions. Adv. Appl. Probab. 39(4), 973–990 (2007) zbMATHCrossRefGoogle Scholar
  12. Gelfand, A., Smith, A., Lee, T.: Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Am. Stat. Assoc. 87(418), 523–532 (1992) CrossRefMathSciNetGoogle Scholar
  13. Geweke, J.: Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints and the evaluation of constraint probabilities. Comput. Sci. Stat. 23, 571–578 (1991) Google Scholar
  14. Gilks, W., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Appl. Stat. 41(2), 337–348 (1992) zbMATHCrossRefGoogle Scholar
  15. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, Berlin (2004) zbMATHGoogle Scholar
  16. Gulam Razul, S., Fitzgerald, W., Andrieu, C.: Bayesian model selection and parameter estimation of nuclear emission spectra using RJMCMC. Nucl. Inst. Methods Phys. Res. 497(2–3), 492–510 (2003) CrossRefGoogle Scholar
  17. Hörmann, W.: A rejection technique for sampling from T-concave distributions. ACM Trans. Math. Softw. 21(2), 182–193 (1995) zbMATHCrossRefGoogle Scholar
  18. Hörmann, W.: Algorithm 802: an automatic generator for bivariate log-concave distributions. ACM Trans. Math. Softw. 26(1), 201–219 (2000) CrossRefGoogle Scholar
  19. Hörmann, W., Leydold, J.: A note on perfect slice sampling. Technical Report 29, Dept. Stats. Maths. Wirtschaftsuniv (2006) Google Scholar
  20. Hörmann, W., Leydold, J., Derflinger, G.: Automatic Nonuniform Random Variate Generation. Springer, Berlin (2004) zbMATHGoogle Scholar
  21. Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions. Wiley, New York (1994) zbMATHGoogle Scholar
  22. Leydold, J.: Automatic sampling with the ratio-of-uniforms method. ACM Trans. Math. Softw. 26(1), 78–98 (2000) zbMATHCrossRefGoogle Scholar
  23. Linardakis, M., Dellaportas, P.: Assessment of Athens’s metro passenger behaviour via a multiranked Probit model. J. R. Stat. Soc. C 52(2), 185–200 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  24. Marsaglia, G.: Generating a variable from the tail of the normal distribution. Technometrics 6(1), 101–102 (1964) CrossRefMathSciNetGoogle Scholar
  25. Marsaglia, G., Tsang, W.W.: A fast, easily implemented method for sampling from decreasing or symmetric unimodal density functions. SIAM J. Sci. Stat. Comput. 5, 349–359 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  26. Marsaglia, G., Tsang, W.: The Ziggurat method for generating random variables. J. Stat. Soft. 5(8) (2000) Google Scholar
  27. McCulloch, R., Rossi, P.: An exact likelihood analysis of the multinomial probit model. J. Econom. 64(1), 207–240 (1994) CrossRefMathSciNetGoogle Scholar
  28. Nobile, A.: A hybrid Markov chain for the Bayesian analysis of the multinomial probit model. Stat. Comput. 8(3), 229–242 (1998) CrossRefGoogle Scholar
  29. Philippe, A., Robert, C.: Perfect simulation of positive Gaussian distributions. Stat. Comput. 13(2), 179–186 (2003) CrossRefMathSciNetGoogle Scholar
  30. Pitt, M., Chan, D., Kohn, R.: Efficient Bayesian inference for Gaussian copula regression models. Biometrika 93, 537–554 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  31. Prekopa, A.: On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34, 335–343 (1973) zbMATHMathSciNetGoogle Scholar
  32. Robert, C.P.: Simulation of truncated normal variables. Stat. Comput. 5, 121–125 (1995) zbMATHCrossRefGoogle Scholar
  33. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC, London (2005) zbMATHCrossRefGoogle Scholar
  34. Tanner, M., Wong, W.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82(398), 528–540 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  35. Wichura, M.: Algorithm AS 241: The percentage points of the normal distribution. Appl. Stat., 477–484 (1988) Google Scholar
  36. Zaman, A.: Generating random numbers from a unimodal density by cutting corners. Unpublished manuscript (1996) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.ENSAE-CRESTMalakoff CedexFrance

Personalised recommendations