Advertisement

Statistics and Computing

, Volume 21, Issue 2, pp 275–288 | Cite as

Fast simulation of truncated Gaussian distributions

  • Nicolas ChopinEmail author
Article

Abstract

We consider the problem of simulating a Gaussian vector X, conditional on the fact that each component of X belongs to a finite interval [a i ,b i ], or a semi-finite interval [a i ,+∞). In the one-dimensional case, we design a table-based algorithm that is computationally faster than alternative algorithms. In the two-dimensional case, we design an accept-reject algorithm. According to our calculations and numerical studies, the acceptance rate of this algorithm is bounded from below by 0.5 for semi-finite truncation intervals, and by 0.47 for finite intervals. Extension to three or more dimensions is discussed.

Accept-reject Markov chain Monte Carlo Tail Gaussian distribution Truncated Gaussian distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table. Dover, New York (1965) Google Scholar
  2. Ahrens, J.: Sampling from general distributions by suboptimal division of domains. Grazer Math. Ber. 20(319) (1993) Google Scholar
  3. Ahrens, J.: A one-table method for sampling from continuous and discrete distributions. Computing 54(2), 127–146 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  4. Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88(422), 669–79 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  5. Blair, J., Edwards, C., Johnson, J.: Rational Chebyshev approximations for the inverse of the error function. Math. Comput. (1976) Google Scholar
  6. Chen, M., Deely, J.: Bayesian analysis for a constrained linear multiple regression problem for predicting the new crop of apples. J. Agric. Biol. Environ. Stat. 1(4), 467–489 (1996) CrossRefMathSciNetGoogle Scholar
  7. Chib, S.: Bayes inference in the Tobit censored regression model. J. Econom. 51(1–2), 79–99 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  8. Chib, S., Greenberg, E.: Analysis of multivariate probit models. Biometrika 85(2), 347 (1998) zbMATHCrossRefGoogle Scholar
  9. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986) zbMATHGoogle Scholar
  10. Evans, M., Swartz, T.: Random variable generation using concavity properties of transformed densities. J. Comput. Graph. Stat. 7(4), 514–528 (1998) CrossRefGoogle Scholar
  11. Fernández, P., Ferrari, P., Grynberg, S.: Perfectly random sampling of truncated multinormal distributions. Adv. Appl. Probab. 39(4), 973–990 (2007) zbMATHCrossRefGoogle Scholar
  12. Gelfand, A., Smith, A., Lee, T.: Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Am. Stat. Assoc. 87(418), 523–532 (1992) CrossRefMathSciNetGoogle Scholar
  13. Geweke, J.: Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints and the evaluation of constraint probabilities. Comput. Sci. Stat. 23, 571–578 (1991) Google Scholar
  14. Gilks, W., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Appl. Stat. 41(2), 337–348 (1992) zbMATHCrossRefGoogle Scholar
  15. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, Berlin (2004) zbMATHGoogle Scholar
  16. Gulam Razul, S., Fitzgerald, W., Andrieu, C.: Bayesian model selection and parameter estimation of nuclear emission spectra using RJMCMC. Nucl. Inst. Methods Phys. Res. 497(2–3), 492–510 (2003) CrossRefGoogle Scholar
  17. Hörmann, W.: A rejection technique for sampling from T-concave distributions. ACM Trans. Math. Softw. 21(2), 182–193 (1995) zbMATHCrossRefGoogle Scholar
  18. Hörmann, W.: Algorithm 802: an automatic generator for bivariate log-concave distributions. ACM Trans. Math. Softw. 26(1), 201–219 (2000) CrossRefGoogle Scholar
  19. Hörmann, W., Leydold, J.: A note on perfect slice sampling. Technical Report 29, Dept. Stats. Maths. Wirtschaftsuniv (2006) Google Scholar
  20. Hörmann, W., Leydold, J., Derflinger, G.: Automatic Nonuniform Random Variate Generation. Springer, Berlin (2004) zbMATHGoogle Scholar
  21. Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions. Wiley, New York (1994) zbMATHGoogle Scholar
  22. Leydold, J.: Automatic sampling with the ratio-of-uniforms method. ACM Trans. Math. Softw. 26(1), 78–98 (2000) zbMATHCrossRefGoogle Scholar
  23. Linardakis, M., Dellaportas, P.: Assessment of Athens’s metro passenger behaviour via a multiranked Probit model. J. R. Stat. Soc. C 52(2), 185–200 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  24. Marsaglia, G.: Generating a variable from the tail of the normal distribution. Technometrics 6(1), 101–102 (1964) CrossRefMathSciNetGoogle Scholar
  25. Marsaglia, G., Tsang, W.W.: A fast, easily implemented method for sampling from decreasing or symmetric unimodal density functions. SIAM J. Sci. Stat. Comput. 5, 349–359 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  26. Marsaglia, G., Tsang, W.: The Ziggurat method for generating random variables. J. Stat. Soft. 5(8) (2000) Google Scholar
  27. McCulloch, R., Rossi, P.: An exact likelihood analysis of the multinomial probit model. J. Econom. 64(1), 207–240 (1994) CrossRefMathSciNetGoogle Scholar
  28. Nobile, A.: A hybrid Markov chain for the Bayesian analysis of the multinomial probit model. Stat. Comput. 8(3), 229–242 (1998) CrossRefGoogle Scholar
  29. Philippe, A., Robert, C.: Perfect simulation of positive Gaussian distributions. Stat. Comput. 13(2), 179–186 (2003) CrossRefMathSciNetGoogle Scholar
  30. Pitt, M., Chan, D., Kohn, R.: Efficient Bayesian inference for Gaussian copula regression models. Biometrika 93, 537–554 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  31. Prekopa, A.: On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34, 335–343 (1973) zbMATHMathSciNetGoogle Scholar
  32. Robert, C.P.: Simulation of truncated normal variables. Stat. Comput. 5, 121–125 (1995) zbMATHCrossRefGoogle Scholar
  33. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC, London (2005) zbMATHCrossRefGoogle Scholar
  34. Tanner, M., Wong, W.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82(398), 528–540 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  35. Wichura, M.: Algorithm AS 241: The percentage points of the normal distribution. Appl. Stat., 477–484 (1988) Google Scholar
  36. Zaman, A.: Generating random numbers from a unimodal density by cutting corners. Unpublished manuscript (1996) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.ENSAE-CRESTMalakoff CedexFrance

Personalised recommendations