Abstract
In many fields of empirical research one is faced with observations arising from a functional process. If so, classical multivariate methods are often not feasible or appropriate to explore the data at hand and functional data analysis is prevailing. In this paper we present a method for joint modeling of mean and variance in longitudinal data using penalized splines. Unlike previous approaches we model both components simultaneously via rich spline bases. Estimation as well as smoothing parameter selection is carried out using a mixed model framework. The resulting smooth covariance structures are then used to perform principal component analysis. We illustrate our approach by several simulations and an application to financial interest data.
This is a preview of subscription content, access via your institution.
References
Besse, P., Ramsay, J.O.: Principal components analysis of sampled functions. Psychometrika 51, 285–311 (1986)
Breslow, N.E., Lin, X.: Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika 82, 81–91 (1995)
Brumback, B.A., Rice, J.A.: Smoothing spline models for the analysis of nested and crossed samples of curves (c/r: P976-994). J. Am. Stat. Assoc. 93, 961–976 (1998)
Cardot, H.: Conditional functional principal components analysis. Scand. J. Stat. 34, 317–335 (2007)
Cardot, H., Chaouch, M., Goga, C., Labrure, C.: Functional principal components analysis with survey data. Technical Report no. 518 of University of Burgundy (http://math.ubourgogne.fr/IMB/IMB2-publication.html) (2007)
Chiou, J., Müller, H., Wang, J., Carey, J.: A functional multiplicative effects model for longitudinal data, with application to reproductive histories of female medflies. Stat. Sin. 13, 1119–1133 (2003)
de Boor, C.: A Practical Guide to Splines. Springer, Berlin (1978)
Diebold, F.X., Li, C.: Forecasting the term structure of government bond yields. J. Econom. 130, 337–364 (2006)
Diggle, P., Heagerty, P., Liang, K.Y., Zeger, S.: Analysis of Longitudinal Data. Oxford University Press, Oxford (2002)
Duffie, D., Kan, R.: A yield-factor model of interest rates. Math. Finance 6, 379–406 (1996)
Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B splines and penalties. Stat. Sci. 11(2), 89–121 (1996)
Fan, J., Zhang, J.T.: Two-step estimation of functional linear models with applications to longitudinal data. J. R. Stat. Soc., Ser. B 62, 303–322 (2000)
Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Springer, New York (2006)
Hastie, T., Tibshirani, R.: Varying-coefficient models. J. R. Stat. Soc., Ser. B 55, 757–796 (1993)
Kauermann, G., Krivobokova, T., Fahrmeir, L.: Some asymptotic results on generalized penalized spline smoothing. J. R. Stat. Soc., Ser. B 487–503 (2009)
Li, Y., Ruppert, D.: On the asymptotics of penalized splines. Biometrika 95(2), 415–436 (2008)
Lin, X., Carroll, R.J.: Semiparametric regression for clustered data using generalized estimating equations. J. Am. Stat. Assoc. 96, 1045–1056 (2001)
Litterman, R., Scheinkman, J.: Common factors affecting bond returns. J. Fixed Income 1, 54–61 (1991)
O’Sullivan, F.: A statistical perspective on ill-posed inverse problems (c/r: P519-527). Stat. Sci. 1, 502–518 (1986)
Pinheiro, J., Bates, D.: Mixed-Effects Models in S and Splus. Springer, New York (2000)
R Development Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2007). ISBN 3-900051-07-0
Ramsay, J., Silverman, B.: Functional Data Analysis, 2nd edn. Springer, New York (2005)
Rao, C.R.: Some statistical methods for comparison of growth curves. Biometrics 14, 1–17 (1958)
Rice, J.A., Silverman, B.W.: Estimating the mean and covariance structure nonparametrically when the data are curves. J. R. Stat. Soc., Ser. B 53, 233–243 (1991)
Rice, J.A., Wu, C.O.: Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57, 253–259 (2001)
Ruppert, D.: Selecting the number of knots for penalized splines. J. Comput. Graph. Stat. 11, 735–757 (2002)
Ruppert, R., Wand, M., Carroll, R.: Semiparametric Regression. Cambridge University Press, Cambridge (2003)
SAS-Institute: SAS/STAT User’s Guide, Version 8. SAS Institute, Inc. (1999)
Searle, S., Casella, G., McCulloch, C.: Variance Components. Wiley, New York (1992)
Staniswalis, J., Lee, J.: Nonparametric regression analysis of longitudinal data. J. Am. Stat. Assoc. 93, 1403–1418 (1998)
Steeley, J.: Modelling the dynamics of the term structure of interest rates. Econ. Soc. Rev. 21, 337–361 (1990)
Wager, C., Vaida, F., Kauermann, G.: Model selection for p-spline smoothing using Akaike information criteria. Austr. N. Z. J. Stat. 49(2), 173–190 (2007)
Wand, M.: Smoothing and mixed models. Comput. Stat. 18, 223–249 (2003)
Wand, M., Jones, M.: Kernel Smoothing. Chapman & Hall, London (1995)
Wang, N., Carroll, R.J., Lin, X.: Efficient semiparametric marginal estimation for longitudinal/clustered data. J. Am. Stat. Assoc. 100, 147–157 (2005)
Wolfinger, R.: Laplace’s approximation for nonlinear mixed models. Biometrika 80, 791–795 (1993)
Yao, F., Lee, T.C.M.: Penalized spline models for functional principal component analysis. J. R. Stat. Soc., Ser. B 68, 3–25 (2006)
Yao, F., Müller, H., Clifford, A.J., Dueker, S.R., Follet, J., Yumei, L., Buchholz, B.A., Vogel, J.S.: Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate. Biometrics 57, 253–259 (2003)
Yao, F., Müller, H., Wang, J.L.: Functional linear regression analysis for longitudinal data. Ann. Stat. 33, 2873–2903 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kauermann, G., Wegener, M. Functional variance estimation using penalized splines with principal component analysis. Stat Comput 21, 159–171 (2011). https://doi.org/10.1007/s11222-009-9156-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-009-9156-5