Advertisement

Statistics and Computing

, Volume 20, Issue 3, pp 283–293 | Cite as

Weighted composite likelihood-based tests for space-time separability of covariance functions

  • M. Bevilacqua
  • J. MateuEmail author
  • E. Porcu
  • H. Zhang
  • A. Zini
Article

Abstract

Testing for separability of space-time covariance functions is of great interest in the analysis of space-time data. In this paper we work in a parametric framework and consider the case when the parameter identifying the case of separability of the associated space-time covariance lies on the boundary of the parametric space. This situation is frequently encountered in space-time geostatistics. It is known that classical methods such as likelihood ratio test may fail in this case.

We present two tests based on weighted composite likelihood estimates and the bootstrap method, and evaluate their performance through an extensive simulation study as well as an application to Irish wind speeds. The tests are performed with respect to a new class of covariance functions, which presents some desirable mathematical features and has margins of the Generalized Cauchy type. We also apply the test on a element of the Gneiting class, obtaining concordant results.

Keywords

Fractal dimension Full symmetry Hurst effect Space-time covariance functions Space-time separability Weighted composite likelihood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, C., Mateu, J., Porcu, E.: The Dagum family of isotropic correlation functions. Bernoulli 14, 1134–1149 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  2. Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussions). J. R. Stat. Soc. B 36, 192–236 (1974) zbMATHMathSciNetGoogle Scholar
  3. Bevilacqua, M., Gaetan, C., Mateu, J., Porcu, E.: Estimating space and space-time covariance functions: a weighted composite likelihood approach. J. Am. Stat. Assoc. (2009, to appear) Google Scholar
  4. Cox, D.R.: Partial likelihood. Biometrika 62, 269–276 (1975) zbMATHCrossRefMathSciNetGoogle Scholar
  5. Cressie, N., Huang, H.: Classes of nonseparable, spatiotemporal stationary covariance functions. J. Am. Stat. Assoc. 94, 1330–1340 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  6. Crujeiras, R.M., Fernández-Casal, R., González-Manteiga, W.: Goodness-of-fit tests for spatial spectral density. Technical report 07-01, Departamento de Estadística e Investigación Operativa, Universidade de Santiago de Compostela (2008) Google Scholar
  7. Curriero, F., Lele, S.: A composite likelihood approach to semivariogram estimation. J. Agric. Biol. Environ. Stat. 4, 9–28 (1999) CrossRefMathSciNetGoogle Scholar
  8. De Luna, X., Genton, M.: Predictive spatio-temporal models for spatially sparse environmental data. Stat. Sinica 15, 547–568 (2005) zbMATHGoogle Scholar
  9. Efron, B.: The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadelphia (1982) Google Scholar
  10. Feng, Z.Z., McCulloch, C.E.: Using bootstrap likelihood ratios in finite mixture models. J. R. Stat. Soc. Ser. B 58, 609–617 (1996) zbMATHGoogle Scholar
  11. Fuentes, M.: Interpolation of nonstationary air pollution processes: a spatial spectral approach. Stat. Model. 2, 281–298 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  12. Fuentes, M.: A formal test for nonstationarity of spatial stochastic processes. J. Multivar. Anal. 96, 30–54 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  13. Fuentes, M.: Testing for separability of spatial-temporal covariance functions. J. Stat. Plan. Inference 136, 447–466 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  14. Gneiting, T.: Stationary covariance functions for space-time data. J. Am. Stat. Assoc. 97, 590–600 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  15. Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect. Soc. Indust. Appl. Math. Rev. 46, 269–282 (2004) zbMATHMathSciNetGoogle Scholar
  16. Gneiting, T., Genton, M.G., Guttorp, P.: Geostatistical space-time models, stationarity, separability and full symmetry. In: Finkenstadt, B., Held, L., Isham, V. (eds.) Statistical Methods for Spatio-Temporal Systems, pp. 151–175. Chapman & Hall/CRC, Boca Raton (2007) Google Scholar
  17. Godambe, V.: An optimum property of regular maximum likelihood equation. Ann. Math. Stat. 31, 1208–1211 (1960) CrossRefMathSciNetGoogle Scholar
  18. Guan, Y., Sherman, M., Calvin, J.A.: A nonparametric test for spatial isotropy using subsampling. J. Am. Stat. Assoc. 99, 810–821 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  19. Hartigan, J.A.: A failure of likelihood asymptotic for normal mixtures. In: LeCam, L., Olshen, R.A. (eds.) Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, vol. II, pp. 807–810. Wadsworth and Brooks, Belmont (1985) Google Scholar
  20. Haslett, J., Raftery, A.: Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. Appl. Stat. 38, 1–50 (1989) CrossRefGoogle Scholar
  21. Heagerty, P., Lumley, T.: Window subsampling of estimating functions with application to regression models. J. Am. Stat. Assoc. 95, 197–211 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  22. Heyde, C.: Quasi-likelihood and Its Application: A General Approach to Optimal Parameter Estimation. Springer, New York (1997) zbMATHCrossRefGoogle Scholar
  23. Kolesárová, A.: Limit properties of quasi-arithmetic means. Fuzzy Sets Syst. 124, 65–71 (2001) zbMATHCrossRefGoogle Scholar
  24. Li, B., Genton, M.G., Sherman, M.: A nonparametric assessment of properties of space-time covariance functions. J. Am. Stat. Assoc. 102, 736–744 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  25. Lindsay, B.: Composite likelihood methods. Contemp. Math. 80, 221–239 (1988) MathSciNetGoogle Scholar
  26. Lu, H., Zimmerman, D.L.: Testing for directional symmetry in spatial dependence using the periodogram. J. Stat. Plan. Inference 129, 369–385 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  27. Ma, C.: A class of stationary random fields with a simple correlation structure. J. Multivar. Anal. 94, 313–327 (2004) CrossRefGoogle Scholar
  28. Mardia, K., Marshall, R.: Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71, 135–146 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  29. Mateu, J., Juan, P., Porcu, E.: Geostatistical analysis through spectral techniques: some words of caution. Commun. Stat. Comput. Simul. 36, 1035–1051 (2007a) zbMATHCrossRefMathSciNetGoogle Scholar
  30. Mateu, J., Porcu, E., Nicolis, O.: A note on decoupling of local and global behaviour for the Dagum random field. Probab. Eng. Mech. 22, 320–329 (2007b) CrossRefGoogle Scholar
  31. Mitchell, M., Genton, M.G., Gumpertz, M.: Testing for separability of space-time covariances. Environmetrics 16, 819–831 (2005) CrossRefMathSciNetGoogle Scholar
  32. Mitchell, M., Genton, M.G., Gumpertz, M.: A likelihood ratio test for separability of covariances. J. Multivar. Anal. 97, 1025–1043 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  33. Porcu, E., Gregori, P., Mateu, J.: Nonseparable stationary anisotropic space time covariance functions. Stoch. Environ. Res. Risk Assess. 21, 113–122 (2006) CrossRefMathSciNetGoogle Scholar
  34. Porcu, E., Mateu, J., Christakos, G.: Quasi-arithmetic means of covariance functions with potential applications to space-time data. J. Multivar. Anal. (2009, to appear). doi: 10.1016/j.jmva.2009.02.013
  35. Scaccia, L., Martin, R.J.: Testing for simplification in spatial models. In: COMPSTAT 2002, pp. 581–586. Physica, Heidelberg (2002) Google Scholar
  36. Scaccia, L., Martin, R.J.: Testing axial symmetry and separability of lattice processes. J. Stat. Plan. Inference 131, 19–39 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  37. Stein, M.: Space-time covariance functions. J. Am. Stat. Assoc. 100, 310–321 (2005) zbMATHCrossRefGoogle Scholar
  38. Varin, C., Vidoni, P.: A note on composite likelihood inference and model selection. Biometrika 52, 519–528 (2005) CrossRefMathSciNetGoogle Scholar
  39. Wang, H.H., Zhang, H.: Model-based clustering for cross-sectional time series data. J. Agric. Biol. Environ. Stat. 7, 107–127 (2002) CrossRefGoogle Scholar
  40. Zhang, H.: Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99, 250–261 (2004) zbMATHCrossRefGoogle Scholar
  41. Zhang, H., Zimmerman, D.: Towards reconciling two asymptotic frameworks in spatial statistics. Biometrika 92, 921–936 (2005) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Bevilacqua
    • 1
  • J. Mateu
    • 2
    Email author
  • E. Porcu
    • 2
  • H. Zhang
    • 3
  • A. Zini
    • 4
  1. 1.Dipartimento di Scienze StatisticheUniversità di PadovaPadovaItaly
  2. 2.Department of MathematicsUniversitat Jaume ICastellónSpain
  3. 3.Department of StatisticsPurdue UniversityWest LafayetteUSA
  4. 4.Department of Quantitative Methods for Business and Economic SciencesUniversity of Milano BicoccaMilanItaly

Personalised recommendations