Statistics and Computing

, Volume 18, Issue 4, pp 435–446 | Cite as

Differential Evolution Markov Chain with snooker updater and fewer chains

Open Access


Differential Evolution Markov Chain (DE-MC) is an adaptive MCMC algorithm, in which multiple chains are run in parallel. Standard DE-MC requires at least N=2d chains to be run in parallel, where d is the dimensionality of the posterior. This paper extends DE-MC with a snooker updater and shows by simulation and real examples that DE-MC can work for d up to 50–100 with fewer parallel chains (e.g. N=3) by exploiting information from their past by generating jumps from differences of pairs of past states. This approach extends the practical applicability of DE-MC and is shown to be about 5–26 times more efficient than the optimal Normal random walk Metropolis sampler for the 97.5% point of a variable from a 25–50 dimensional Student t 3 distribution. In a nonlinear mixed effects model example the approach outperformed a block-updater geared to the specific features of the model.


Evolutionary Monte Carlo Metropolis algorithm Adaptive Markov chain Monte Carlo Theophylline kinetics Adaptive direction sampling Parallel computing Differential evolution 


  1. Babu, B.V., Angira, R.: Modified differential evolution (MDE) for optimization of non-linear chemical processes. Comput. Chem. Eng. 30, 989–1002 (2006) CrossRefGoogle Scholar
  2. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall, London (2004) MATHGoogle Scholar
  3. Gilks, W.R., Roberts, G.O.: Strategies for improving MCMC. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.) Markov Chain Monte Carlo in Practice, pp. 89–114. Chapman & Hall, London (1996) Google Scholar
  4. Gilks, W.R., Roberts, G.O., George, E.I.: Adaptive direction sampling. Statistician 43, 179–189 (1994) CrossRefGoogle Scholar
  5. Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7, 223–242 (2001) MATHCrossRefMathSciNetGoogle Scholar
  6. Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: Efficient adaptive MCMC. Stat. Comput. 16, 339–354 (2006) CrossRefMathSciNetGoogle Scholar
  7. Jarner, S.F., Roberts, G.O.: Convergence of heavy-tailed Monte Carlo Markov chain algorithms. Scand. J. Stat. 34, 781–815 (2007) MathSciNetGoogle Scholar
  8. Liang, F.M., Wong, W.H.: Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. J. Am. Stat. Assoc. 96, 653–666 (2001) MATHCrossRefMathSciNetGoogle Scholar
  9. Liu, J., Hodges, J.S.: Posterior bimodality in the balanced one-way random-effects model. J. R. Stat. Soc. Ser. B 65, 247–255 (2003) MATHCrossRefMathSciNetGoogle Scholar
  10. Mengersen, K., Robert, C.P.: IID sampling using self-avoiding population Monte Carlo: the pinball sampler. In: Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (eds.) Bayesian Statistics 7, pp. 277–292. Clarendon, Oxford (2003) Google Scholar
  11. Pinheiro, J.C., Bates, D.M.: Mixed-Effects Models in S and S-PLUS. Springer, New York (2000) MATHGoogle Scholar
  12. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, A Practical Approach to Global Optimization. Springer, Berlin (2005) MATHGoogle Scholar
  13. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004) MATHGoogle Scholar
  14. Roberts, G.O., Gilks, W.R.: Convergence of adaptive direction sampling. J. Multivar. Anal. 49, 287–298 (1994) MATHCrossRefMathSciNetGoogle Scholar
  15. Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16, 351–367 (2001) MATHCrossRefMathSciNetGoogle Scholar
  16. Roberts, G.O.: Linking theory and practice of MCMC. In: Green, P.J., Hjort, N.L., Richardson, S. (eds.) Highly Structured Stochastic Systems, pp. 145–166. Oxford University Press, Oxford (2003) Google Scholar
  17. Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44, 458–475 (2007) MATHCrossRefMathSciNetGoogle Scholar
  18. Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. Online ms. (2008) Google Scholar
  19. Spiegelhalter, D., Thomas, A., Best, N., Lunn, D.: WinBUGS User Manual version 1.4. (2003)
  20. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997) MATHCrossRefMathSciNetGoogle Scholar
  21. Strens, M., Bernhardt, M., Everett, N.: Markov chain Monte Carlo sampling using direct search optimization. In: Sammut, C., Hoffmann, A.G. (eds.) Machine Learning, Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002), pp. 602–609. Morgan Kaufmann, San Fransisco (2002) Google Scholar
  22. ter Braak, C.J.F.: A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006) CrossRefMathSciNetGoogle Scholar
  23. Thomas, A., O’Hara, R.B.: OpenBUGS. (2007)
  24. Vrugt, J.A., ter Braak, C.J.F., Gupta, H.V., Robinson, B.A.: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment (SERRA) (2008a). DOI: 10.1007/s00477-008-0274-y
  25. Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backwards with Markov chain Monte Carlo simulation. Water Resour. Res. (2008b, in press) Google Scholar
  26. Waagepetersen, R., Sorensen, D.: A tutorial on reversible jump MCMC with a view toward applications in QTL-mapping. Int. Stat. Rev. 69, 49–61 (2001) MATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.BiometrisWageningen University and Research CentreWageningenThe Netherlands
  2. 2.Center for NonLinear Studies (CNLS)Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations