Advertisement

Statistics and Computing

, Volume 19, Issue 1, pp 17–26 | Cite as

Imaging convex quadrilateral inclusions in uniform conductors from electrical boundary measurements

  • Debasish RoyEmail author
  • Geoff Nicholls
  • Colin Fox
Article

Abstract

We demonstrate simulation-based Bayesian imaging from electrical impedance tomographic data, by summarizing the set of conductance images which could give rise to the data. The forward map from conductance image to data requires the solution of a partial differential equation subject to boundary conditions. We develop the example of recovering an unknown convex polygonal insulating inclusion within an object made of otherwise uniformly conducting material, and illustrate our methods with noisy synthetic data. Sampling is carried out using Markov chain Monte Carlo with the efficiency of the algorithm investigated over a range of noise levels.

Keywords

Electrical impedance tomography Boundary value problem Inverse problem Markov chain Monte Carlo Bayesian inference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K.E., Brooks, S.P., Hansen, M.B.: Bayesian inversion of geoelectrical resistivity data. J. R. Stat. Soc. Ser. B 65, 619–642 (2003) CrossRefGoogle Scholar
  2. Borcea, L.: Electrical impedance tomography, topical review. Inverse Probl. 18, R99–R136 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  3. Calderón: On an inverse boundary value problem. In: Meyer, W.H., Raupp, M.A. (eds.) Seminar on Numerical Analysis and Its Applications to Continuum Physics, pp. 65–73. Brazilian Math. Society, Rio de Janeiro (1980) Google Scholar
  4. Cheney, M., Isaacson, D., Isaacson, E.L.: Exact solutions to a linearized inverse boundary value problem. Inverse Probl. 6, 923–934 (1989) CrossRefMathSciNetGoogle Scholar
  5. Cheng, K.S., Isaacson, D., Newell, J.C., Gisser, D.G.: Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36, 918–924 (1989) CrossRefGoogle Scholar
  6. Chung, H.: Conductance Imaging. M.Sc. Thesis, Department of Mathematics, The University of Auckland (1998) Google Scholar
  7. Cornean, H., Knudsen, K., Siltanen, S.: Towards a D-bar reconstruction method for three dimensional EIT. J. Inverse Ill-posed Probl. 14, 111–134 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  8. Fox, C., Nicholls, G.K.: Sampling conductivity images via MCMC. In: Mardia, K., Ackroyd, R.G., Gill, C.A. (eds.) The Art and Science of Bayesian Image Analysis, Proceedings of the Leeds Annual Statistics Research Workshop, pp. 91–100. Leeds University Press, Leeds (1997) Google Scholar
  9. Geyer, C.J.: Practical Markov chain Monte Carlo (with discussion). Stat. Sci. 7, 473–511 (1992) CrossRefGoogle Scholar
  10. Hua, P., Woo, E.J., Webster, J.G., Tompkins, W.J.: Iterative reconstruction methods using regularization and optimal current patterns in electrical impedance tomography. IEEE Trans. Med. Imag. 10, 621–628 (1991) CrossRefGoogle Scholar
  11. Ider, Y.Z., Onart, S., Lionheart, W.R.B.: Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT). Physiol. Meas. 24, 591–604 (2003) CrossRefGoogle Scholar
  12. Isaacson, D., Cheney, M.: Effects of measurement precision and finite number of electrodes on linear impedance imaging algorithms. SIAM J. Appl. Math. 51, 1705–1731 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  13. Isaacson, D., Isaacson, E.L.: Comment on Calderón’s paper: On an inverse boundary value problem. Math. Comput. 52, 553–559 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  14. Isaacson, D., Mueller, J.L., Newell, J.C., Siltanen, S.: Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imag. 23, 821–828 (2004) CrossRefGoogle Scholar
  15. Isaacson, D., Mueller, J.L., Newell, J.C., Siltanen, S.: Imaging cardiac activity by the D-bar method for electrical impedance tomography. Physiol. Meas. 27, S43–S50 (2006) CrossRefGoogle Scholar
  16. Kaipio, J.P., Kolehmainen, V., Somersalo, E., Vauhkonen, M.: Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Probl. 16, 1487–1522 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  17. Kim, S., Kwon, O., Seo, J.K.: Location search techniques for a grounded conductor. SIAM J. Appl. Math. 62, 1383–1393 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  18. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  19. Knudsen, K., Mueller, J., Siltanen, S.: Numerical solution method for the D-bar equation in the plane. J. Comput. Phys. 198, 500–517 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  20. Knudsen, K., Tamasan, A.: Reconstruction of less regular conductivities in the plane. Commun. Partial Differ. Equ. 29, 361–381 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  21. Martin, T., Idier, J.: A Bayesian non-linear approach for electrical impedance tomography. Tech. Rep. CNRS, martin@lss.supelec.fr. Lab. des Signaux at Systems, CNRS, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France (1997) Google Scholar
  22. Mueller, J.L., Siltanen, S.: Direct reconstructions of conductivities from boundary measurements. SIAM J. Sci. Comput. 24, 1232–1266 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  23. Nachman, A.I.: Reconstructions from boundary measurements. Ann. Math. 128, 531–576 (1988) CrossRefMathSciNetGoogle Scholar
  24. Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143, 71–96 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  25. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989) CrossRefGoogle Scholar
  26. Siltanen, S., Mueller, J., Isaacson, D.: An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem. Inverse Probl. 16, 681–699 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  27. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52, 1023–1040 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  28. Somersalo, E., Kaipio, J.P., Vauhkonen, M., Baroudi, D.: Impedance imaging and Markov chain Monte Carlo methods. In: Proceeding of the SPIE’s 42nd Annual Meeting, pp. 175–185 (1997) Google Scholar
  29. Sylvester, J.: A convergent layer stripping algorithm for the radially symmetric impedance tomography problem. Commun. Partial Differ. Equ. 17, 1955–1994 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  30. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987) CrossRefMathSciNetGoogle Scholar
  31. Vauhkonen, P.J., Vauhkonen, M., Savolainen, T., Kaipio, J.P.: Three dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans. Biomed. Eng. 46, 1150–1160 (1999) CrossRefGoogle Scholar
  32. West, R.M., Aykroyd, R.G., Meng, S., Williams, R.A.: Markov chain Monte Carlo techniques and spatial-temporal modelling for medical EIT. Physiol. Meas. 25, 181–194 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mathematics DepartmentAuckland UniversityAucklandNew Zealand
  2. 2.Statistics DepartmentOxford UniversityOxfordUK

Personalised recommendations