Advertisement

Statistics and Computing

, Volume 17, Issue 1, pp 49–55 | Cite as

H-likelihood: problems and solutions

  • Youngjo LeeEmail author
  • John A. Nelder
  • Maengseok Noh
Article

Abstract

In recent issues of this journal it has been asserted in two papers that the use of h-likelihood is wrong, in the sense of giving unsatisfactory estimates of some parameters for binary data (Kuk and Cheng, 1999; Waddington and Thompson, 2004) or theoretically unsound (Kuk and Cheng, 1999). We wish to refute both these assertions.

Keywords

Hierarchical-likelihood H-likelihood Marginal likelihood Random effects Hierarchical generalized linear models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barndorff-Nielsen O.E. 1983. On a formula for the distribution of the maximum likelihood estimator. Biometrika 70: 343–365.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Birnbaum A. 1962. On the foundations of statistical inference (with discussion). J. Am. Statist. Ass. 57: 269–306.CrossRefMathSciNetGoogle Scholar
  3. Bjørnstad J.F. 1996. On the generalization of the likelihood function and likelihood principle. J. Am. Statist. Ass. 91: 791–806.zbMATHCrossRefGoogle Scholar
  4. Breslow N.E. and Clayton D.G. 1993. Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 88: 9–25.zbMATHCrossRefGoogle Scholar
  5. Breslow N.E. and Lin X. 1995. Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika 82: 81–91.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Carlin B.P. and Louis T.A. 2000. Bayesian and Empirical Bayesian Methods for Data Analysis. Chapman and Hall, London.Google Scholar
  7. Cox D.R. and Reid N. 1987. Parameter orthogonality and approximate conditional inference (with discussion). J. R. Statist. Soc. B 49: 1–39.zbMATHMathSciNetGoogle Scholar
  8. Drum M.L. and McCullagh P. 1993. REML estimation with exact covariance in the logistic mixed model. Biometrics 49: 677–689.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Ha I.D. and Lee Y. 2003. Estimating frailty models via Poisson hierarchical generalized linear models. J. Comput. Graph. Statist. 12: 663–681.CrossRefMathSciNetGoogle Scholar
  10. Ha I.D. and Lee Y. 2005. Comparison of hierarchical likelihood versus orthodox BLUP approach for frailty models. Biometrika 92: 717–723.CrossRefMathSciNetGoogle Scholar
  11. Ha I.D., Lee Y., and Song J.K. 2001. Hierarchical likelihood approach for frailty models. Biometrika 88: 233–243.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Ha I.D., Lee Y., and Song J.K. 2002. Hierarchical likelihood approach for mixed linear models with censored data. Lifetime Data Anal. 8: 163–176.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Harville D. 1977. Maximum likelihood approaches to variance component estimation and related problems. J. Amer. Statist. Assoc. 72: 320–340.zbMATHCrossRefMathSciNetGoogle Scholar
  14. Kuk A.Y.C. and Cheng Y.W. 1999. Pointwise and functional approximations in Monte Carlo maximum likelihood estimation. Statist. and Comput. 9: 91–99.CrossRefGoogle Scholar
  15. Lee Y. 2002. Robust variance estimators for fixed-effect estimates with hierarchical likelihood. Statist. and Comp. 12: 201–207.CrossRefGoogle Scholar
  16. Lee Y. and Nelder J.A. 1996. Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B 58: 619–678.zbMATHMathSciNetGoogle Scholar
  17. Lee Y. and Nelder J.A. 2001a. Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect model and structured dispersion. Biometrika 88: 987–1006.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Lee Y. and Nelder J.A. 2001b. Modelling and analyzing correlated non-normal data. Statistical Modelling 1: 3–16.zbMATHCrossRefGoogle Scholar
  19. Lee Y. and Nelder J.A. 2005. Likelihood for random-effect models (with discussion). Statist. and Operational Research Transactions 29: 141–182.zbMATHMathSciNetGoogle Scholar
  20. Lee Y. and Nelder J.A. 2006. Double hierarchical generalized linear models (with discussion). App. Statist. 55: 139–185.MathSciNetGoogle Scholar
  21. Lin X. and Breslow N.E. 1996. Bias correction in generalized linear mixed models with multiple components of dispersion. J. Amer. Statist. Assoc. 91: 1007–1016.zbMATHCrossRefMathSciNetGoogle Scholar
  22. McCullagh P. and Nelder J.A. 1989. Generalized Linear Models, 2nd Edn. Chapman & Hall, London.zbMATHGoogle Scholar
  23. Mendell N.R. and Elston R.C. 1974. Multifactorial qualitative traits: Genetic analysis and prediction of recurrence risks. Biometrics 30: 41–57.CrossRefMathSciNetGoogle Scholar
  24. Noh M. and Lee Y. 2006. REML estimation for binary data in generalized linear mixed models. J. Multivariate. Anal., in press.Google Scholar
  25. Schall R. 1991. Estimation in generalized linear models with random effects. Biometrika 78: 719–727.zbMATHCrossRefGoogle Scholar
  26. Shun Z. and McCullagh P. 1995. Laplace approximation of high-dimensional integrals. J. R. Statist. Soc. B 57: 749–760.zbMATHMathSciNetGoogle Scholar
  27. Smyth G.K. and Verbyla A.P. 1996. A conditional likelihood approach to residual maximum likelihood estimation in generalized linear models. J. R. Statist. Soc. B 58: 565–572.zbMATHMathSciNetGoogle Scholar
  28. Waddington D. and Thompson R. 2004. Using a correlated probit model approximation to estimate the variance for binary matched pairs. Statist. and Comp. 14: 83–90.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of StatisticsSeoul National UniversitySeoulKorea
  2. 2.Department of MathematicsImperial CollegeLondonUK
  3. 3.Division of Mathematical SciencesPukyong National UniversityBusanKorea

Personalised recommendations