Skip to main content
Log in

Preparation and Characterization of Affordable Experimental Setup for Particulate Matter Sensing

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The interest in particulate matter (PM) sensors has significantly increased over the last decade. It is crucial to have a proper experimental setup to test these sensors. However, most devices used in PM test setups, both for generating and measuring PM, are bulky and expensive. This study aims to solve this issue by designing a cost-effective experimental setup. The setup includes a custom-made PM generator, small-sized laser and quartz crystal microbalance (QCM) sensors. The PM generator can produce PM from three different sources: dry powder, liquid suspension, and combustion. The QCM is used to overcome the limitations of laser sensors for sensing ultra-fine particles. Moreover, the performance of the QCM sensor has been investigated with various PM sources and ambient conditions. The study reveals that the QCM response can be influenced by the PM source and ambient conditions. Changes in PM composition and size significantly impact the QCM response. Additionally, relative humidity (RH) can alter the sensor response by up to 22%. While the temperature change in the flow has an insignificant effect on the bare QCM response, increasing the temperature from 25 °C to 30 °C results in a 12% change in the QCM response for the grease-coated sensor. Notably, the QCM sensor demonstrates the best response with small-sized smoke PMs, with the least impact from ambient conditions. The laser sensors work very well with large particles; however, they struggle with small-sized smoke PMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the finding of this study are available from the corresponding author on reasonable request.

References

  1. Alfano, B., Barretta, L., Giudice, A. D., De Vito, S., Francia, G. D., Esposito, E., et al. (2020). A review of low-cost particulate matter sensors from the developers’ perspectives. Sensors (Switzerland), 20(23), 1–56. https://doi.org/10.3390/s20236819

    Article  Google Scholar 

  2. Antonini, J. M., Taylor, M. D., Zimmer, A. T., & Roberts, J. R. (2004). Pulmonary responses to welding fumes: Role of metal constituents. Journal of Toxicology and Environmental Health - Part A, 67(3), 233–249. https://doi.org/10.1080/15287390490266909

    Article  Google Scholar 

  3. Austin, E., Novosselov, I., Seto, E., & Yost, M. G. (2015). Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor. PLoS ONE, 10(9), 1–17. https://doi.org/10.1371/journal.pone.0137789

    Article  Google Scholar 

  4. Chen, M., Romay, F. J., Li, L., Naqwi, A., & Marple, V. A. (2016). A novel quartz crystal cascade impactor for real-time aerosol mass distribution measurement. Aerosol Science and Technology, 50(9), 971–983. https://doi.org/10.1080/02786826.2016.1213790

    Article  Google Scholar 

  5. Chiriacò, M. S., Rizzato, S., Primiceri, E., Spagnolo, S., Monteduro, A. G., Ferrara, F., & Maruccio, G. (2018). Optimization of SAW and EIS sensors suitable for environmental particulate monitoring. Microelectronic Engineering, 202(October), 31–36. https://doi.org/10.1016/j.mee.2018.10.008

    Article  Google Scholar 

  6. European Environment Agency. (2019). EEA Report No 19/2019. Assessing air quality through citizen science.https://doi.org/10.2800/619

  7. Fahimi, D., Mahdavipour, O., Sabino, J., White, R. M., & Paprotny, I. (2019). Vertically-stacked MEMS PM25 sensor for wearable applications. Sensors and Actuators, A: Physical, 299, 111569. https://doi.org/10.1016/j.sna.2019.111569

    Article  Google Scholar 

  8. Hemmingsen, J. G., Rissler, J., Lykkesfeldt, J., Sallsten, G., Kristiansen, J., PM, P., & Loft, S. (2015). Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults. Particle and Fibre Toxicology, 12(1), 1–10. https://doi.org/10.1186/s12989-015-0081-9

    Article  Google Scholar 

  9. Hu, J., Huang, L., Chen, M., Liao, H., Zhang, H., Wang, S., et al. (2017). Premature mortality attributable to particulate matter in China: Source contributions and responses to reductions. Environmental Science and Technology, 51(17), 9950–9959. https://doi.org/10.1021/acs.est.7b03193

    Article  Google Scholar 

  10. Huang, X. H., Pan, W., Hu, J. G., & Bai, Q. S. (2018). The exploration and confirmation of the maximum mass sensitivity of quartz crystal microbalance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(10), 1888–1892. https://doi.org/10.1109/TUFFC.2018.2860597

    Article  Google Scholar 

  11. Kaur, K., Mohammadpour, R., Jaramillo, I. C., Ghandehari, H., Reilly, C., Paine, R., & Kelly, K. E. (2019). Application of a quartz crystal microbalance to measure the mass concentration of combustion particle suspensions. Journal of Aerosol Science, 137(June), 105445. https://doi.org/10.1016/j.jaerosci.2019.105445

    Article  Google Scholar 

  12. Liang, D., Shih, W. P., Chen, C. S., & Dai, C. A. (2010). A miniature system for separating aerosol particles and measuring mass concentrations. Sensors, 10(4), 3641–3654. https://doi.org/10.3390/s100403641

    Article  Google Scholar 

  13. Lloyd, O. L. (1978). Lung cancer and air pollution. The Lancet, 311(8078), 1366. https://doi.org/10.1016/S0140-6736(78)92444-3

    Article  Google Scholar 

  14. Mehta, A. J., Zanobetti, A., Koutrakis, P., Mittleman, M. A., Sparrow, D., Vokonas, P., & Schwartz, J. (2014). Associations between short-term changes in air pollution and correlates of arterial stiffness: The veterans affairs normative aging study, 2007–2011. American Journal of Epidemiology, 179(2), 192–199. https://doi.org/10.1093/aje/kwt271

    Article  Google Scholar 

  15. Münzel, T., Gori, T., Al-Kindi, S., Deanfield, J., Lelieveld, J., Daiber, A., & Rajagopalan, S. (2018). Effects of gaseous and solid constituents of air pollution on endothelial function. European Heart Journal, 39(38), 3543–3550. https://doi.org/10.1093/eurheartj/ehy481

    Article  Google Scholar 

  16. Olin, J. G., & Sem, G. J. (1971). Piezoelectric microbalance for monitoring the mass concentration of suspended particles. Atmospheric Environment (1967), 5(8), 653–668. https://doi.org/10.1016/0004-6981(71)90123-5

    Article  Google Scholar 

  17. Olsson, A. L. J., Quevedo, I. R., He, D., Basnet, M., & Tufenkji, N. (2013). Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. ACS Nano, 7(9), 7833–7843. https://doi.org/10.1021/nn402758w

    Article  Google Scholar 

  18. Palomba, E., Poppe, T., Colangeli, L., Palumbo, P., Perrin, J. M., Bussoletti, E., & Henning, T. (2001). The sticking efficiency of quartz crystals for cosmic sub-micron grain collection. Planetary and Space Science, 49(9), 919–926. https://doi.org/10.1016/S0032-0633(01)00015-0

    Article  Google Scholar 

  19. Paprotny, I., Doering, F., Solomon, P. A., White, R. M., & Gundel, L. A. (2013). Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results. Sensors and Actuators, A: Physical, 201, 506–516. https://doi.org/10.1016/j.sna.2012.12.026

    Article  Google Scholar 

  20. Peters, T. M., Ott, D., & O’Shaughnessy, P. T. (2006). Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles. Annals of Occupational Hygiene, 50(8), 843–850. https://doi.org/10.1093/annhyg/mel067

    Article  Google Scholar 

  21. Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Zeitschrift fur Physik, 155(2), 206–222. https://doi.org/10.1007/BF01337937

    Article  Google Scholar 

  22. Shaughnessy, W. J., Venigalla, M. M., & Trump, D. (2015). Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population. Atmospheric Environment, 123, 102–111. https://doi.org/10.1016/j.atmosenv.2015.10.039

    Article  Google Scholar 

  23. Singh, N., Elsayed, M. Y., & El-Gamal, M. N. (2019). Realizing a highly compact particulate matter sensor with a MEMS-based resonant membrane. In: Proceedings of IEEE Sensors, 2019-Octob, 2019–2022. https://doi.org/10.1109/SENSORS43011.2019.8956505

  24. Sousan, S., Koehler, K., Hallett, L., & Peters, T. M. (2017). Evaluation of consumer monitors to measure particulate matter. Journal of Aerosol Science, 107(February), 123–133. https://doi.org/10.1016/j.jaerosci.2017.02.013

    Article  Google Scholar 

  25. Thomas, S., Cole, M., Villa-López, F. H., & Gardner, J. W. (2016). High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sensors and Actuators, A: Physical, 244, 138–145. https://doi.org/10.1016/j.sna.2016.04.003

    Article  Google Scholar 

  26. Turner, M. C., Andersen, Z. J., Baccarelli, A., Diver, W. R., Gapstur, S. M., & Pope, C. A. (2020). Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: A Cancer Journal for Clinicians, 70(6), 460–479. https://doi.org/10.3322/caac.21632

    Article  Google Scholar 

  27. Victor, J., Zoccal, M., Arouca, F. D. O., Coury, J. R., Antonio, J., & Gonçalves, S. (2012). Size distribution of Tio2 nanoparticles generated by a commercial aerosol generator for different solution concentrations and air flow rates. Materials Science Forum, 728, 861–866. https://doi.org/10.4028/www.scientific.net/MSF.727-728.861

    Article  Google Scholar 

  28. Weichenthal, S. (2012). Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environmental Research, 115, 26–36. https://doi.org/10.1016/j.envres.2012.03.001

    Article  Google Scholar 

  29. White, R. M., Black, J. P., Apte, M. G., & Gundel, L. A. (2008). Development of a low-cost particulate matter monitor. Indoor Environment Group. https://indoor.lbl.gov/publications/development-low-cost-particulate

  30. Zampetti, E., Macagnano, A., Papa, P., Bearzotti, A., Petracchini, F., Paciucci, L., & Pirrone, N. (2017). Exploitation of an integrated microheater on QCM sensor in particulate matter measurements. Sensors and Actuators, A: Physical, 264, 205–211. https://doi.org/10.1016/j.sna.2017.08.004

    Article  Google Scholar 

  31. Zhao, J., Liu, M., Liang, L., Wang, W., & Xie, J. (2016). Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor. Sensors and Actuators, A: Physical, 238, 379–388. https://doi.org/10.1016/j.sna.2015.12.029

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the funding support from the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project No. 119C197), and the financial support from Arçelik Inc.

Author information

Authors and Affiliations

Authors

Contributions

Majid Javadzadehkalkhoran: methodology, investigation, writing—original draft, writing—review and editing. Levent Trabzon: conceptualization, resources, methodology, investigation, validation, writing—review editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Majid Javadzadehkalkhoran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical Responsibilities of Authors” as found in the instructions for authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadzadehkalkhoran, M., Trabzon, L. Preparation and Characterization of Affordable Experimental Setup for Particulate Matter Sensing. Sens Imaging 25, 29 (2024). https://doi.org/10.1007/s11220-024-00479-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-024-00479-0

Keywords

Navigation