Skip to main content
Log in

New Compact Broadband SRR Loaded Antenna Pattern for 5G Applications

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

In this paper, we propose efficient split-ring-resonators (SRRs) loaded circular patch with a central frequency of 28 GHz, terminated by an insulating rectangular slot for 5G communication systems. The. The efficiency features of the antenna, with a Rogers RT5880 substrate of 1.575 mm of thickness, were examined using Computer Simulation Technology (CST). The antenna is developed from the proposed optimized antenna and is tested by using the vector network analyzer (VNA). Through the use of optimization techniques, the bandwidth will increase from 1.93 GHz (27.10 –29.03 GHz) to 3.56 GHz (26.16 –29.72 GHz) by integrating these Split Ring Resonators (SRR). The gain increases from 2.7 dBi to 7.38 dBi when two pairs of Split Ring Resonators are incorporated (SRRs). Our methodology was compared to that of previously published studies. The results are satisfactory, and the suggested antenna is a viable contender for operation in the 28 GHz millimeter-wave frequency spectrum for 5G applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Hwang, J., Ahn, B., Chae, S. C., Yu, J. W., & Lee, W. W. (May 2019). Quasi-yagi antenna array with modified folded dipole driver for mmWave 5G Cellular devices. IEEE Antennas and Wireless Propagation Letters, 18(5), 971–975. https://doi.org/10.1109/LAWP.2019.2906775.

  2. Yuan, X. T., Chen, Z., Gu, T., & Yuan, T. (March 2021). A Wideband PIFA-Pair-based MIMO Antenna for 5G smartphones. IEEE Antennas and Wireless Propagation Letters, 20(3), 371–375. https://doi.org/10.1109/LAWP.2021.3050337.

  3. Karthika, K., & Kavitha, K. (2021). Reconfigurable antennas for advanced wireless communications: A review. Wireless Personal Communications, 120, 2711–2771. https://doi.org/10.1007/s11277-021-08555-4.

    Article  Google Scholar 

  4. Lima de, Paula, et al. (Feb. 2021). Cost-effective high-performance air-filled SIW antenna array for the global 5G 26 GHz and 28 GHz bands. IEEE Antennas and Wireless Propagation Letters, 20(2), 194–198. https://doi.org/10.1109/LAWP.2020.3044114.

  5. Yang, S. J., Pan, Y. M., Shi, L. Y., & Zhang, X. Y. (Jul 2020). Millimeter-wave dual-polarized filtering antenna for 5G application. IEEE Transactions on Antennas and Propagation, 68(7), 5114–5121. https://doi.org/10.1109/TAP.2020.2975534.

  6. Kazemi, R., Yang, S., Suleiman, S. H., & Fathy, A. E. (June 2019). Design procedure for compact dual-circularly polarized slotted substrate integrated waveguide antenna arrays. IEEE Transactions on Antennas and Propagation, 67(6), 3839–3852. https://doi.org/10.1109/TAP.2019.2905682.

  7. Ahdi Rezaeieh, S., & Abbosh, A. M. (Aug. 2016). Compact planar loop–dipole composite antenna with director for bandwidth enhancement and back radiation suppression. IEEE Transactions on Antennas and Propagation, 64(8), 3723–3728. https://doi.org/10.1109/TAP.2016.2570246.

  8. Yacoub, M., Khalifa, M. O., & Aloi, D. N. (2022). wide band raised printed monopole for automotive 5g wireless communications. IEEE Open Journal of Antennas and Propagation, 3, 502–510. https://doi.org/10.1109/OJAP.2022.3170799.

    Article  Google Scholar 

  9. Uwiringiyimana, J. P., Khayam, U., Suwarno, & Montanari, G. C. (2022). Comparative analysis of partial discharge detection features using a UHF antenna and conventional HFCT sensor. Ieee Access : Practical Innovations, Open Solutions, 10, 107214–107226. https://doi.org/10.1109/ACCESS.2022.3212746.

    Article  Google Scholar 

  10. Li, Y., Zhao, Z., Tang, Z., Yin, Y. (2019). Differentially-fed, wideband dual-polarized filtering antenna with novel feeding structure for 5G Sub-6 GHz base station applications. Ieee Access : Practical Innovations, Open Solutions, 7, 184718–184725. https://doi.org/10.1109/ACCESS.2019.2960885.

    Article  Google Scholar 

  11. Yang, S. J., Yao, S. F., Ma, R. Y., & Zhang, X. Y. (Dec. 2022). Low profile dual-wideband dual-polarized antenna for 5G millimeter-wave communications. IEEE Antennas and Wireless Propagation Letters, 21(12), 2367–2371. https://doi.org/10.1109/LAWP.2022.3193808.

  12. Choudhary, H., Singh, T., Arif Ali, K., Vats, A., Singh, P. K., Phalswal, D. R., and Gahlaut, V. (2016). Design & analysis of triple band-notched micro-strip UWB antenna. Cogent Engineering, 3(1), 1249603. https://doi.org/10.1080/23311916.2016.1249603.

    Article  Google Scholar 

  13. Ali, A., Munir, M. E., Marey, M., Mostafa, H., Zakaria, Z., Al-Gburi, A. J. A., & Bhatti, F. A. (2023). A compact MIMO multiband antenna for 5G/WLAN/WIFI-6 devices. Micromachines, 14, 1153. https://doi.org/10.3390/mi14061153.

    Article  Google Scholar 

  14. Aparna, E., Ram, G., & Kumar, G. A. (2022). Review on substrate integrated waveguide cavity backed slot antennas. Ieee Access : Practical Innovations, Open Solutions, 10, 133504–133525. https://doi.org/10.1109/ACCESS.2022.3231984.

    Article  Google Scholar 

  15. Arpan Desai, M., Palandoken, I., Elfergani, I., Akdag, C., Zebiri, J., Bastos, J., Rodriguez, Raed, A., & Abd-Alhameed (2022). Transparent 2-Element 5G MIMO antenna for sub-6 GHz applications. Electronics, 11(2), 251. https://doi.org/10.3390/electronics11020251.

    Article  Google Scholar 

  16. Han, Z. J., Song, W., & Sheng, X. Q. (2017). Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface. IEEE Antennas and Wireless Propagation Letters, 16, 1631–1634. https://doi.org/10.1109/LAWP.2017.2658195.

    Article  Google Scholar 

  17. Dadgarpour, A. A., Kishk, & Denidni, T. A. (2016). Gain enhancement of planar antenna enabled by array of split-ring resonators. IEEE Transactions on Antennas and Propagation, 64(8), 3682–3687. https://doi.org/10.1109/TAP.2016.2565741.

    Article  MathSciNet  Google Scholar 

  18. Wang, Z., Dong, Y., Ning, Y., Itoh, T., & (Nov. 2021). Miniaturized circularly polarized periodically structured surface antenna for RFID application inspired by SRR. IEEE Transactions on Antennas and Propagation, 69(11), 7269–7277. https://doi.org/10.1109/TAP.2021.3075720.

    Article  Google Scholar 

  19. Khalily, M., Tafazolli, R., Xiao, P., & Kishk., A. A. (Sept. 2018). Broadband Mm-wave microstrip array antenna with improved radiation characteristics for different 5G applications. IEEE Transactions on Antennas and Propagation, 66(9), 4641–4647. https://doi.org/10.1109/TAP.2018.2845451.

  20. Teresa, P. M., & Umamaheswari., G. (2022). Compact slotted microstrip antenna for 5G applications operating at 28 GHz. IETE J Res, 68(5), 3778–3385. https://doi.org/10.1080/03772063.2020.1779620.

    Article  Google Scholar 

  21. Przesmycki, R., Bugaj, M., & Nowosielski, L. (2021). Broadband microstrip antenna for 5GWireless systems operating at 28 GHz. Electronics, 10(1). https://doi.org/10.3390/electronics10010001.

Download references

Acknowledgements

The authors express their gratitude to Qassim University’s Deanship of Scientific Research for providing funds for the publishing of this research.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: E. A. H, Z. A. M; analysis and interpretation of results: E. A. H, Z. A. M; draft manuscript preparation: E. A. H, Z. A. M. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to El Amjed Hajlaoui.

Ethics declarations

Conflict of interest

The authors disclose no conflicts of interest. The choice to publish the results, write the publication, collect, analyze, or interpret data, or plan the study were all made without the funders’ input.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajlaoui, E.A., Almohaimeed, Z. New Compact Broadband SRR Loaded Antenna Pattern for 5G Applications. Sens Imaging 25, 27 (2024). https://doi.org/10.1007/s11220-024-00478-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-024-00478-1

Keywords

Navigation