Skip to main content
Log in

Polydimethylsiloxane (PDMS) Coated Broadband Tunable Vanadium Dioxide (VO2) Based Linear Optical Cavity Temperature Sensor

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Silicon on insulator (SOI) based sensors provide a reasonable solution to the issues common in traditional linear optical cavities such as wavelength dependant nature of mirrors, size, and maintaining the resonant condition. In this study we presented polydimethylsiloxane (PDMS) coated SOI based linear optical temperature sensing resonator model and analysed it in finite element method by using COMSOL Multiphysics. The phase changing material (PCM) VO2 on each side of the Si waveguide helped to achieve the resonant condition and thermal tunability of the resonator. An almost linear variation in resonant frequency (wavelength) fr due to the temperature change in the range of 0–90 °C resulted in maximum sensitivity of 0.01 THz/°C or 79.4 pm/°C for the 10 µm cavity length. The recorded sensitivity is at least 5-times (or more) higher than the previous studies. The prominent reasons behind this improvement can be PDMS coating, adequate light matter interaction and proper confinement of resonating mode. The demonstrated sensor model has wide operational frequency range spanning from 10 to 210 THz. Moreover, the reported model also showed an increase in temperature sensitivity from 0.00967 to 0.01 THz/°C while the length of resonator was changed from 2 to 10 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during the study and analysis are available from the corresponding author on request.

References

  1. Di, H., Xin, Y., & Jian, J. (2018). Review of optical fiber sensors for deformation measurement. Optik, 168, 703–713.

    Article  ADS  CAS  Google Scholar 

  2. Leal-Junior, A. G., Diaz, C. A., Avellar, L. M., Pontes, M. J., Marques, C., & Frizera, A. (2019). Polymer optical fiber sensors in healthcare applications: A comprehensive review. Sensors, 19, 3156.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Heijmans, J., Cheng, L., & Wieringa, F. (2008). Optical fiber sensors for medical applications—Practical engineering considerations. In 4th European Conference of the International Federation for Medical and Biological Engineering: ECIFMBE. (2008). 23–27 November 2008 Antwerp. Belgium., 2009, 2330–2334.

  4. Dakin, J. (1987). Multiplexed and distributed optical fibre sensor systems. Journal of Physics E: Scientific Instruments, 20, 954.

    Article  ADS  Google Scholar 

  5. Kersey, A. D. (2011). Distributed and multiplexed fiber optic sensors. Fiber Optic Sensors: An Introduction for Engineers and Scientists, pp, 277–314.

  6. Mihailov, S. J. (2012). Fiber Bragg grating sensors for harsh environments. Sensors, 12, 1898–1918.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albert, J., Shao, L.-Y., & Caucheteur, C. (2013). Tilted fiber Bragg grating sensors. Laser & Photonics Reviews, 7, 83–108.

    Article  ADS  CAS  Google Scholar 

  8. Li, L., Xia, L., Xie, Z., & Liu, D. (2012). All-fiber Mach-Zehnder interferometers for sensing applications. Optics Express, 20, 11109–11120.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zhao, Y., Zhao, H., Lv, R.-Q., & Zhao, J. (2019). Review of optical fiber Mach-Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications. Optics and Lasers in Engineering, 117, 7–20.

    Article  ADS  Google Scholar 

  10. Ayaz, R. M. A., Uysalli, Y., Morova, B., & Kiraz, A. (2021). Linear cavity tapered fiber sensor using amplified phase-shift cavity ring-down spectroscopy. JOSA B, 38, 1756–1762.

    Article  ADS  Google Scholar 

  11. Villatoro, J., Monzón-Hernández, D., & Mejía, E. (2003). Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors. Applied optics, 42, 2278–2283.

    Article  ADS  PubMed  Google Scholar 

  12. Bianucci, P. (1841). Optical microbottle resonators for sensing. Sensors, 2016, 16.

    Google Scholar 

  13. Wang, D., Wang, Z., Lee, A., Marr, L. C., Heflin, J. R., & Xu, Y. (2016). Highly sensitive nano-aerosol detection based on the whispering-gallery-mode in cylindrical optical fiber resonators. Aerosol Science and Technology, 50, 1366–1374.

    Article  ADS  CAS  Google Scholar 

  14. Soria, S., Berneschi, S., Brenci, M., Cosi, F., Conti, G. N., Pelli, S., & Righini, G. C. (2011). Optical microspherical resonators for biomedical sensing. Sensors, 11, 785–805.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mescia, L., & Prudenzano, F. (2013). Advances on optical fiber sensors. Fibers, 2, 1–23.

    Article  Google Scholar 

  16. Yu, D., Humar, M., Meserve, K., Bailey, R. C., Chormaic, S. N., & Vollmer, F. (2021). Whispering-gallery-mode sensors for biological and physical sensing. Nature Reviews Methods Primers, 1, 83.

    Article  CAS  Google Scholar 

  17. Foreman, M. R., Swaim, J. D., & Vollmer, F. (2015). Whispering gallery mode sensors. Advances in Optics and Photonics, 7, 168–240.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brice, I., Grundsteins, K., Atvars, A., Alnis, J., Viter, R., & Ramanavicius, A. (2020). Whispering gallery mode resonator and glucose oxidase based glucose biosensor. Sensors and Actuators B: Chemical, 318, 128004.

    Article  CAS  Google Scholar 

  19. Liu, Z., Liu, L., Zhu, Z., Zhang, Y., Wei, Y., Zhang, X., Zhao, E., Zhang, Y., Yang, J., & Yuan, L. (2016). Whispering gallery mode temperature sensor of liquid microresonastor. Optics Letters, 41, 4649–4652.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Matsko, A. B., Savchenkov, A. A., Yu, N., & Maleki, L. (2007). Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. JOSA B, 24, 1324–1335.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Pongruengkiat, W., & Pechprasarn, S. (2017). Whispering-gallery mode resonators for detecting cancer. Sensors, 17, 2095.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Haigh, J., Langenfeld, S., Lambert, N., Baumberg, J., Ramsay, A., Nunnenkamp, A., & Ferguson, A. (2015). Magneto-optical coupling in whispering-gallery-mode resonators. Physical Review A, 92, 063845.

    Article  ADS  Google Scholar 

  23. Alnis, J., Schliesser, A., Wang, C. Y., Hofer, J., Kippenberg, T. J., & Hänsch, T. (2011). Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Physical Review A, 84, 011804.

    Article  ADS  Google Scholar 

  24. Matsko, A. B., Savchenkov, A. A., Strekalov, D., Ilchenko, V. S., & Maleki, L. (2005). Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion. Physical Review A, 71, 033804.

    Article  ADS  Google Scholar 

  25. Lim, J., Savchenkov, A. A., Dale, E., Liang, W., Eliyahu, D., Ilchenko, V., Matsko, A. B., Maleki, L., & Wong, C. W. (2017). Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nature Communications, 8, 8.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Kowzan, G., Charczun, D., Cygan, A., Trawiński, R. S., Lisak, D., & Masłowski, P. (2019). Broadband optical cavity mode measurements at Hz-level precision with a comb-based VIPA spectrometer. Scientific Reports, 9, 8206.

  27. Black, E. D. (2001). An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 69, 79–87.

    Article  ADS  Google Scholar 

  28. Kobler, J., Lotsch, B. V., Ozin, G. A., & Bein, T. (2009). Vapor-sensitive bragg mirrors and optical isotherms from mesoporous nanoparticle suspensions. ACS Nano, 3, 1669–1676.

    Article  CAS  PubMed  Google Scholar 

  29. Von Lerber, T., & Sigrist, M. W. (2002). Cavity-ring-down principle for fiber-optic resonators: Experimental realization of bending loss and evanescent-field sensing. Applied Optics, 41, 3567–3575.

    Article  ADS  Google Scholar 

  30. Ayaz, R. M. A., Uysalli, Y., Morova, B., Bavili, N., Ullah, U., Ghauri, M. D., Cheema, M. I., & Kiraz, A. (2020). Linear cavity tapered fiber sensor using mode-tracking phase-shift cavity ring-down spectroscopy. JOSA B, 37, 1707–1713.

    Article  ADS  CAS  Google Scholar 

  31. Stokes, L. F., Chodorow, M., & Shaw, H. J. (1982). All-single-mode fiber resonator. Optics Letters, 7, 288–290.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Siew, S. Y., Li, B., Gao, F., Zheng, H. Y., Zhang, W., Guo, P., Xie, S. W., Song, A., Dong, B., Luo, L. W., et al. (2021). Review of silicon photonics technology and platform development. Journal of Lightwave Technology, 39, 4374–4389.

    Article  ADS  CAS  Google Scholar 

  33. Vermeulen, D., Selvaraja, S., Verheyen, P., Lepage, G., Bogaerts, W., Absil, P., Van Thourhout, D., & Roelkens, G. (2010). High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Optics Express, 18, 18278–18283.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Aamer, M., Gutierrez, A. M., Brimont, A., Vermeulen, D., Roelkens, G., Fedeli, J.-M., Hakansson, A., & Sanchis, P. (2012). CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photonics Technology Letters, 24, 2031–2034.

    Article  ADS  CAS  Google Scholar 

  35. Csutak, S., Dakshina-Murthy, S., & Campbell, J. C. (2002). CMOS-compatible planar silicon waveguide-grating-coupler photodetectors fabricated on silicon-on-insulator (SOI) substrates. IEEE Journal of quantum electronics, 38, 477–480.

    Article  ADS  CAS  Google Scholar 

  36. Painchaud, Y., Poulin, M., Latrasse, C., & Picard, M.-J. (2012). Bragg grating based Fabry-Perot filters for characterizing silicon-on-insulator waveguides. In The 9th International Conference on Group IV Photonics (GFP), pp 180–182.

  37. Shnaiderman, R., Wissmeyer, G., Ülgen, O., Mustafa, Q., Chmyrov, A., & Ntziachristos, V. (2020). A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature, 585, 372–378.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Butt, M., Khonina, S., & Kazanskiy, N. (2019). Numerical analysis of a miniaturized design of a Fabry-Perot resonator based on silicon strip and slot waveguides for bio-sensing applications. Journal of Modern Optics, 66, 1172–1178.

    Article  ADS  CAS  Google Scholar 

  39. Tu, Z., Gao, D., Zhang, M., & Zhang, D. (2017). High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator. Optics Express, 25, 20911–20922.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Prabhathan, P., Murukeshan, V., Jing, Z., & Ramana, P. V. (2009). Compact SOI nanowire refractive index sensor using phase shifted Bragg grating. Optics Express, 17, 15330–15341.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Li, H., Ma, L., Zhao, Q., Zhang, F., Wang, C., & Liu, X. (2018). Rapid response of high precision fiber bragg grating based temperature sensor. In 2018 IEEE 3rd Optoelectronics Global Conference (OGC), 2018, pp 64–67.

  42. Chen, K., Yuan, D., & Zhao, Y. (2021). Review of optical hydrogen sensors based on metal hydrides: Recent developments and challenges. Optics & Laser Technology, 137, 106808.

    Article  CAS  Google Scholar 

  43. Saber, M. G., Abadía, N., Wang, Y., & Plant, D. V. (2018). Fabry-Perot resonators with transverse coupling on SOI using loop mirrors. Optics Communications, 415, 121–126.

    Article  ADS  CAS  Google Scholar 

  44. Miller, K. J., Haglund, R. F., & Weiss, S. M. (2018). Optical phase change materials in integrated silicon photonic devices. Optical Materials Express, 8, 2415–2429.

    Article  ADS  CAS  Google Scholar 

  45. Zhang, Y., Chou, J. B., Li, J., Li, H., Du, Q., Yadav, A., Zhou, S., Shalaginov, M. Y., Fang, Z., Zhong, H., et al. (2019). Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 10, 4279.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Kawakubo, T., & Nakagawa, T. (1964). Phase transition in VO2. Journal of the Physical Society of Japan, 19, 517–519.

    Article  ADS  CAS  Google Scholar 

  47. Kosuge, K. (1967). The phase transition in VO2. Journal of the Physical Society of Japan, 22, 551–557.

    Article  ADS  CAS  Google Scholar 

  48. Ko, C., & Ramanathan, S. (2009). Dispersive capacitance and conductance across the phase transition boundary in metal-vanadium oxide-silicon devices. Journal of Applied Physics, 106, 034101.

    Article  ADS  Google Scholar 

  49. Ryckman, J. D., Diez-Blanco, V., Nag, J., Marvel, R. E., Choi, B., Haglund, R. F., & Weiss, S. M. (2012). Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators. Optics Express, 20, 13215–13225.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Ryckman, J. D., Hallman, K. A., Marvel, R. E., Haglund, R. F., & Weiss, S. M. (2013). Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Optics Express, 21, 10753–10763.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Zhou, Y., Chen, X., Ko, C., Yang, Z., Mouli, C., & Ramanathan, S. (2013). Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Letters, 34, 220–222.

    Article  ADS  CAS  Google Scholar 

  52. Vitale, W. A., Petit, L., Moldovan, C. F., Fernández-Bolaños, M., Paone, A., Schüler, A., & Ionescu, A. M. (2016). Electrothermal actuation of vanadium dioxide for tunable capacitors and microwave filters with integrated microheaters. Sensors and Actuators A: Physical, 241, 245–253.

    Article  CAS  Google Scholar 

  53. Nouman, M. T., Hwang, J. H., Faiyaz, M., Lee, K.-J., Noh, D.-Y., & Jang, J.-H. (2018). Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable tera-hertz optical phase and polarization control. Optics Express, 26, 12922–12929.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Chang, T.-C., Cao, X., Bao, S.-H., Ji, S.-D., Luo, H.-J., & Jin, P. (2018). Review on thermochromic vanadium dioxide based smart coatings: From lab to commercial application. Advances in Manufacturing, 6, 1–19.

    Article  CAS  Google Scholar 

  55. Chang, T., Cao, X., Dedon, L. R., Long, S., Huang, A., Shao, Z., Li, N., Luo, H., & Jin, P. (2018). Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings. Nano Energy, 44, 256–264.

    Article  ADS  CAS  Google Scholar 

  56. Sweatlock, L. A., & Diest, K. (2012). Vanadium dioxide based plasmonic modulators. Optics Express, 20, 8700–8709.

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Taylor, S., Yang, Y., & Wang, L. (2017). Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 197, 76–83.

    Article  ADS  CAS  Google Scholar 

  58. Taylor, S., Long, L., McBurney, R., Sabbaghi, P., Chao, J., & Wang, L. (2020). Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling. Solar Energy Materials and Solar Cells, 217, 110739.

    Article  CAS  Google Scholar 

  59. Papari, G. P., Pellegrino, A. L., Malandrino, G., & Andreone, A. (2022). Sensing enhancement of a Fabry-Perot THz cavity using switchable VO 2 mirrors. Optics Express, 30, 19402–19415.

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Mata, A., Fleischman, A. J., & Roy, S. (2005). Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices, 7, 281–293.

    Article  CAS  PubMed  Google Scholar 

  61. Lötters, J. C., Olthuis, W., Veltink, P. H., & Bergveld, P. (1997). The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. Journal of Micromechanics and Microengineering, 7, 145.

    Article  ADS  Google Scholar 

  62. Torino, S., Conte, L., Iodice, M., Coppola, G., & Prien, R. D. (2017). PDMS membranes as sensing element in optical sensors for gas detection in water. Sensing and Bio-Sensing Research, 16, 74–78.

    Article  Google Scholar 

  63. Kavungal, V., Farrell, G., Wu, Q., Mallik, A. K., Shen, C., & Semenova, Y. (2019). Packaged inline cascaded optical micro-resonators for multi-parameter sensing. Optical Fiber Technology, 50, 50–54.

    Article  ADS  Google Scholar 

  64. Liu, Y., Huang, L., Dong, J., Li, B., & Song, X. (2021). High sensitivity fiber-optic temperature sensor based on PDMS glue-filled capillary. Optical Fiber Technology, 67, 102699.

    Article  CAS  Google Scholar 

  65. Chen, Z., Xiong, S., Gao, S., Zhang, H., Wan, L., Huang, X., Huang, B., Feng, Y., Liu, W., & Li, Z. (2018). High-temperature sensor based on Fabry-Perot interferometer in microfiber tip. Sensors, 18, 202.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Wu, D., Zhao, Y., & Li, J. (2015). PCF taper-based Mach-Zehnder interferometer for refractive index sensing in a PDMS detection cell. Sensors and Actuators B: Chemical, 213, 1–4.

    Article  CAS  Google Scholar 

  67. Yang, W., Zhang, S., Geng, T., Li, L., Li, G., Gong, Y., Zhang, K., Tong, C., Lu, C., Sun, W., et al. (2019). High sensitivity refractometer based on a tapered-single mode-no core-single mode fiber structure. Sensors, 19, 1722.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Herter, J., Wunderlich, V., Janeczka, C., & Zamora, V. (2018). Experimental demonstration of temperature sensing with packaged glass bottle microresonators. Sensors, 18, 4321.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  69. Uslu, M. E., Misirlioglu, I. B., & Sendur, K. (2018). Selective IR response of highly textured phase change VO 2 nanostructures obtained via oxidation of electron beam deposited metallic V films. Optical Materials Express, 8, 2035–2049.

    Article  ADS  CAS  Google Scholar 

  70. Rahimi, E., & Şendur, K. (2017). Temperature-driven switchable-beam Yagi-Uda antenna using VO2 semiconductor-metal phase transitions. Optics Communications, 392, 109–113.

  71. Rahimi, E., Koucheh, A. B., & Sendur, K. (2022). Temperature assisted reflection control using VO 2/Si core-shell nanoparticles. Optical Materials Express, 12, 2974–2981.

    Article  ADS  CAS  Google Scholar 

  72. Zhu, Z., Liu, L., Liu, Z., Zhang, Y., & Zhang, Y. (2017). Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Optics Letters, 42, 2948–2951.

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Butt, M., Khonina, S., Kazanskiy, N., & Piramidowicz, R. (2022). Hybrid metasurface perfect absorbers for temperature and biosensing applications. Optical Materials, 123, 111906.

  74. Khan, Y., Butt, M. A., Khonina, S. N., & Kazanskiy, N. L. (2022). Thermal sensor based on polydimethylsiloxane polymer deposited on low-index-contrast dielectric photonic crystal structure. Photonics, p 770.

  75. Taufiqurrahman, S., Dicky, G., Estu, T., Daud, P., Mahmudin, D., & Anshori, I. (2020). Free spectral range and quality factor enhancement of multi-path optical ring resonator for sensor application. In AIP Conference Proceedings, 2020.

  76. Urbonas, D., BaÍcytis, A., Gabalis, M., Vaškevícius, K., Naujokaité, G., Juodkazis, S., & Petruškevícius, R. (2015). Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks. Optics Letters, 40, 2977–2980.

  77. Fu, Z., Sun, F., Wang, C., Wang, J., & Tian, H. (2019). High-sensitivity broad free-spectral-range two-dimensional three-slot photonic crystal sensor integrated with a 1D photonic crystal bandgap filter. Applied Optics, 58, 5997–6002.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Zhao, X., Wu, X., Zuo, C., Mu, S., Shi, J., Guang, D., Yu, B., Lian, Z., Zhang, B., & Chen, W. (2023). Sensitivity-enhanced temperature sensor utilizing core offset and hollow core Bragg fiber. Optical Fiber Technology, 75, 103165.

    Article  Google Scholar 

  79. Zhang, Y., Liu, M., Zhang, Y., Liu, Z., Yang, X., Zhang, J., Yang, J., & Yuan, L. (2020). Simultaneous measurement of temperature and refractive index based on a hybrid surface plasmon resonance multimode interference fiber sensor. Applied Optics, 59, 1225–1229

  80. Meng, X., Li, S., Li, J., Guo, Y., Li, Z., Shao, P., & Bai, G. (2022). Temperature sensor with high sensitivity and wide detection range based on Mach-Zehnder interferometer and few-mode fiber. IEEE Sensors Journal, 23, 2113–2121.

    Article  ADS  Google Scholar 

  81. Wang, Q., Meng, H., Fan, X., Zhou, M., Liu, F., Liu, C., Wei, Z., Wang, F., & Tan, C. (2020). Optical fiber temperature sensor based on a Mach-Zehnder interferometer with single-mode-thin-core-single-mode fiber structure. Review of Scientific Instruments, 91.

Download references

Author information

Authors and Affiliations

Authors

Contributions

The people involved in the research worked under the guidance of corresponding author.

Corresponding author

Correspondence to Rana M. Armaghan Ayaz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, R.M.A., Mustafa, A. Polydimethylsiloxane (PDMS) Coated Broadband Tunable Vanadium Dioxide (VO2) Based Linear Optical Cavity Temperature Sensor. Sens Imaging 25, 14 (2024). https://doi.org/10.1007/s11220-023-00453-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-023-00453-2

Keywords

Navigation