Skip to main content
Log in

Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si\(_3\)N\(_4\) slot-waveguide on a SiO\(_2\) substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad \(\cdot \) RIU\(^{-1} \cdot \) \(\mu \)m\(^{-1}\) (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The author confirms that the data supporting the findings in this study are available within the article.

References

  1. Ahmed, A. M., & Shaban, M. (2020). Highly sensitive Au-Fe2O3-Au and Fe2O3-Au-Fe2O3 biosensors utilizing strong surface plasmon resonance. Applied Physics B, 126, 57.

    Article  Google Scholar 

  2. Almeida, V. R., Xu, Q., Barrios, C. A., & Lipson, M. (2004). Guiding and confining light in void nanostructure. Optics Letters, 29, 1209–1211.

    Article  Google Scholar 

  3. Amini, B., & Atlasbaf, Z. (2023). Design and analysis of high-sensitivity tunable graphene sensors for cancer detection. Optical and Quantum Electronics, 55, 446.

    Article  Google Scholar 

  4. Barrios, C. A., Gylfason, K. B., Sánchez, B., Griol, A., Sohlström, H., Holgado, M., & Casquel, R. (2007). Slot-waveguide biochemical sensor. Optics Letters, 32, 3080–3082.

    Article  Google Scholar 

  5. Chandra, V., & Ranjan, R. (2021). Performance analysis of different slot waveguide structures for evanescent field based gas sensor applications. Optical and Quantum Electronics, 53, 457. https://doi.org/10.1007/s11082-021-03102-8

    Article  Google Scholar 

  6. Chaudhary, V. S., Kumar, D., Mishra, G. P., Sharma, S., & Kumar, S. (2022). Plasmonic biosensor with gold and titanium dioxide immobilized on photonic crystal fiber for blood composition detection. IEEE Sensors Journal, 22(9), 8474–8481. https://doi.org/10.1109/JSEN.2022.3160482

    Article  Google Scholar 

  7. Chauhan, M., Khanikar, T., & Singh, V. K. (2022). PDMS coated fiber optic sensor for efficient detection of fuel adulteration. Applied Physics B, 128, 89.

    Article  Google Scholar 

  8. Daher, M. G., Trabelsi, Y., Prajapati, Y. K., Panda, A., Ahmed, N. M., & Rashed, A. N. Z. (2023). Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure. Optical and Quantum Electronics, 55, 199.

    Article  Google Scholar 

  9. Ebihara, K., Uchiyamada, K., Asakawa, K., Okubo, K., & Suzuki, H. (2019). Trimodal polymer waveguide interferometer for chemical sensing. Japanese Journal of Applied Physics, 58, 6. https://doi.org/10.7567/1347-4065/ab2221

    Article  Google Scholar 

  10. González-Guerrero, A. B., Maldonado, J., Dante, S., Grajales, D., & Lechuga, L. M. (2017). Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor. Journal of Biophotonics, 1, 61–67.

    Article  Google Scholar 

  11. Grajales, D., Gavela, A. F., Domínguez, C., Sendra, J. R., & Lechuga, L. M. (2019). Low-cost vertical taper for highly efficient light in-coupling in bimodal nanointerferometric waveguide biosensors. Journal of Physics Photonics, 1, 025002. https://doi.org/10.1088/2515-7647/aafebb

    Article  Google Scholar 

  12. Habia, M. I., Manallah, A., & Ayadi, K. (2023). Plasmonic biosensor for the study of blood diseases by analysis of hemoglobin concentration. Optical and Quantum Electronics, 55, 234.

    Article  Google Scholar 

  13. Isayama, Y. H., & Hernández-Figueroa, H. E. (2021). High-order multimode waveguide interferometer for optical biosensing applications. Sensors, 21(9), 3254. https://doi.org/10.3390/s21093254

    Article  Google Scholar 

  14. Isayama, Y. H., & Hernández-Figueroa, H. E. (2023). Design of a novel hybrid multimode interferometer operating with both TE and TM polarizations for sensing applications. Optical and Quantum Electronics, 55, 454.

    Article  Google Scholar 

  15. Ji, L., Zhang, D., Xu, Y., Gao, Y., Wu, C., Wang, X., & Sun, X. (2019). Design of an electro-absorption modulator based on graphene-on-silicon slot waveguide. IEEE Photonics Journal, 11(3), 1–11. https://doi.org/10.1109/JPHOT.2019.2918314

    Article  Google Scholar 

  16. Karki, B., Ramya, K. C., Devi, R. S. S., Srivastava, V., & Pal, A. (2022). Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: numerical analysis. Optical and Quantum Electronics, 54, 451.

    Article  Google Scholar 

  17. Kassa-Baghdouche, L., & Cassan, E. (2019). Sensitivity analysis of ring-shaped slotted photonic crystal waveguides for mid-infrared refractive index sensing. Optical and Quantum Electronics, 51, 328.

    Article  Google Scholar 

  18. Kaur, B., Kumar, S., & Kaushik, B. K. (2022). Mxenes-based fiber-optic SPR sensor for colorectal cancer diagnosis. IEEE Sensors Journal, 22(7), 6661–6668. https://doi.org/10.1109/JSEN.2022.3154385

    Article  Google Scholar 

  19. Khatab, H. M., Areed, N. F. F., El-Mikati, H. A., Hameed, M. F. O., & Obayya, S. S. A. (2022). Efficient plasmonic line-up filter for sensing applications. Optical and Quantum Electronics, 54, 47. https://doi.org/10.1007/s11082-021-03391-z

    Article  Google Scholar 

  20. Kumar, S., Kumar, A., Mishra, R. D., Babu, P., Pandey, S. K., Pal, M. K., & Kumar, M. (2023). Nanophotonic ring resonator based on slotted hybrid plasmonic waveguide for biochemical sensing. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2023.3239868

    Article  Google Scholar 

  21. Laxmi, V., Parveen, A., Tyagi, D., Singh, L., & Ouyang, Z. (2022). Nanophotonic modulator based on silicon-ITO heterojunction and slot waveguide with 2D-graphene sheet. Journal of Optics. https://doi.org/10.1007/s12596-022-00917-w

    Article  Google Scholar 

  22. Li, G., Xu, Q., Singh, R., Zhang, W., Marques, C., Xie, Y., & Kumar, S. (2022). Graphene oxide/multiwalled carbon nanotubes assisted serial quadruple tapered structure-based LSPR sensor for glucose detection. IEEE Sensors Journal, 22(17), 16904–16911.

    Article  Google Scholar 

  23. Li, Z., Hou, C., Luo, Y., Zhang, W., Li, L., Xu, P., & Xu, T. (2023). Embedded racetrack microring resonator sensor based on GeSbSe glasses. Optics Express, 31, 1103–1111.

    Article  Google Scholar 

  24. Meira, D., Proença, M., Rebelo, R., Barbosa, A., Rodrigues, M., Borges, J., & Correlo, V. (2022). Chitosan micro-membranes with integrated gold nanoparticles as an LSPR-based sensing platform. Biosensors, 12, 951.

  25. Nohoji, A., & Danaie, M. (2022). Highly sensitive refractive index sensor based on photonic crystal ring resonators nested in a Mach–Zehnder interferometer. Optical and Quantum Electronics, 54, 574.

    Article  Google Scholar 

  26. Ozcan, C., Aitchison, J. S., & Mojahedi, M. (2023). Optimization of bulk sensitivity for strip, slot, and subwavelength grating-based waveguides for dual-polarization operation. Optics Express, 31, 3579–3594.

    Article  Google Scholar 

  27. Ramirez, J. C., Gabrielli, L. H., Lechuga, L. M., & Hernández-Figueroa, H. E. (2019). Trimodal waveguide demonstration and its implementation as a high order mode interferometer for sensing application. Sensors (Basel), 19(12), 2821. https://doi.org/10.3390/s19122821

    Article  Google Scholar 

  28. Ramirez, J. C., Lechuga, L. M., Gabrielli, L. H., & Hernandez-Figueroa, H. E. (2015). Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors. Optics Express, 23(9), 11985–11994. https://doi.org/10.1364/OE.23.011985

    Article  Google Scholar 

  29. Saeidi, P., Jakoby, B., Pühringer, G., Tortschanoff, A., Stocker, G., Spettel, F., Dubois, F., Grille, T., & Jannesari, R. (2022). Design, analysis, and optimization of a plasmonic slot waveguide for mid-infrared gas sensing. Nanomaterials, 12, 1732.

  30. Shukla, S., Grover, N., & Arora, P. (2023). Resolution enhancement using a multi-layered aluminum-based plasmonic device for chikungunya virus detection. Optical and Quantum Electronics, 55, 276.

    Article  Google Scholar 

  31. Singh, R., & Priye, V. (2021). Si3N4 - SiO2 based curve slot waveguide for high confinement factor and low mode effective area along with biosensing application. Silicon, 14, 859–867.

    Article  Google Scholar 

  32. Sulabh Singh, L., Jain, S., & Kumar, M. (2019). Optical slot waveguide with grating-loaded cladding of silicon and titanium dioxide for label-free bio-sensing. IEEE Sensors Journal, 19(15), 6126–6133. https://doi.org/10.1109/JSEN.2019.2910278

  33. Taha, A. M., Yousuf, S., Dahlem, M. S., & Viegas, J. (2022). Highly-sensitive unbalanced MZI gas sensor assisted with a temperature-reference ring resonator. IEEE Photonics Journal, 14(6), 1–9. https://doi.org/10.1109/JPHOT.2022.3215713

    Article  Google Scholar 

  34. Torrijos-Morán, L., Griol, A., & García-Rupérez, J. (2021). Slow light bimodal interferometry in one-dimensional photonic crystal waveguides. Light Science & Applications, 10, 16.

    Article  Google Scholar 

  35. Wang, Y., He, S., Gao, X., Ye, P., Lei, L., Dong, W., & Xu, P. (2022). Enhanced optical nonlinearity in a silicon-organic hybrid slot waveguide for all-optical signal processing. Photonics Research, 10(1), 50–58.

    Article  Google Scholar 

  36. Xu, Y., Li, J., Kong, M., & Chen, C. (2020). Bent silicon slot waveguides with both low loss and low nonlinearity. Optical and Quantum Electronics, 52, 445. https://doi.org/10.1007/s11082-020-02569-1

    Article  Google Scholar 

  37. Yang, Z., Xia, L., Xia, J., & Li, W. (2020). Compact and highly sensitive temperature sensor established with HSC-SPR embedded in a polymer. Applied Physics B, 126, 156.

    Article  Google Scholar 

  38. Zhang, X., Zhou, C., Luo, Y., Yang, Z., Zhang, W., Li, L., & Xu, T. (2022). High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses. Optics Express, 30, 3866–3875.

    Article  Google Scholar 

Download references

Funding

This work was supported by Brazilian agency Fundação de Amparo à Pesquisa de Minas Gerais - FAPEMIG (under process number APQ-00822-19).

Author information

Authors and Affiliations

Authors

Contributions

YHI was the sole contributor to this work.

Corresponding author

Correspondence to Yuri Hayashi Isayama.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isayama, Y.H. Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity. Sens Imaging 24, 21 (2023). https://doi.org/10.1007/s11220-023-00430-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-023-00430-9

Keywords

Navigation