Skip to main content
Log in

Surface Water Area Extraction by Using Water Indices and DFPS Method Applied to Satellites Data

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Satellite imagesare usedto extract and calculate surface water area and water resource features accurately. Water index and optimum threshold methods are essential for the extraction of surface water area. Various water indices have been developed during the past two decades, such as Normalized difference water index (NDWI), Modified normalized difference water index, Automated Water Extraction Index for shadow and non-shadow, Water Ration Index (WRI) and Normalized difference vegetation index. With application of each of these indices, the surface water area can be extracted by applying the respective threshold values for the indices and computed areas. The present study focuses on the comparing the accuracy of surface water area extraction for respective water indices and obtaining an optimal threshold value to separate water and other features from output images of indices using a Semi-automatic double-window flexible pace search (DFPS) method. The surface water areas of the Kaylana Lake (at Jodhpur, Rajasthan, India)have been extracted for different years with above stated indices and further compared with the extracted values by applying the polygon method on historical images received from Google Earth. The extracted surface water areas with polygon method on historical Google Earth images are 0.88 km2, 0.74 km2, 1.22 km2, 0.67 km2and 1.00 km2for the years 2002, 2008, 2010, 2015, 2019 respectively. The comparison of extracted output results using different indices clearly indicates that the Semi-Automatic DFPS method is the best method to obtain optimum threshold value and to classified water indices output. The final comparison of outputs of indices also shows that overall NDWI provided much better surface water area output results. This study method identifies water bodies using Landsat TM, Lansat ETM + , Landsat OLI, and Sentinel-2A imagery with high accuracy by using NDWI water index and DFPS optimum threshold calculation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Survey of India

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DFPS:

Double windows flexible pace search method

NDWI:

Normalized difference water indices

MNDWI:

Modified normalized difference water indices

WRI:

Water ratio index

NDVI:

Normalized difference water indice

AWEI_sh:

Automated water extraction indices with shadow

AWEI_nsh:

Automated water extraction indices with non_shadow

TM:

Thematic mapper

ETM + :

Enhanced thematic mapper

OLI:

Operational land imager

References

  1. Huang, W., DeVries, B., Huang, C., Lang, M., Jones, J., Creed, I., & Carroll, M. (2018). Automated extraction of surface water extent from sentinel-1 data. Remote Sensing, 10(5), 797. https://doi.org/10.3390/rs10050797

    Article  Google Scholar 

  2. Tang, H., Lu, S., Ali Baig, M. H., Li, M., Fang, C., & Wang, Y. (2022). Large-scale surface water mapping based on landsat and sentinel-1 images. Water, 14(9), 1454. https://doi.org/10.3390/w14091454

    Article  Google Scholar 

  3. Frazier, P. S., & Page, K. J. (2000). Water body detection and delineation with landsat TM data. Photogrammetric Engineering and Remote Sensing, 66, 1461–1468.

    Google Scholar 

  4. Gens, R. (2010). Remote sensing of coastlines: Detection, extraction, and monitoring. International Journal of Remote Sensing, 31, 1819–1836. https://doi.org/10.1080/01431160902926673

    Article  Google Scholar 

  5. Lasko, K., Maloney, M. C., Becker, S. J., Griffin, A. W., Lyon, S. L., & Griffin, S. P. (2021). Automated training data generation from spectral indexes for mapping surface water extent with sentinel-2 satellite imagery at 10 m and 20 m resolutions. Remote Sensing, 13(22), 4531. https://doi.org/10.3390/rs13224531

    Article  Google Scholar 

  6. Xu, H. (2006). Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  7. Qiao, C., Luo, J., Sheng, Y., Shen, Z., Zhu, Z., & Ming, D. (2012). An adaptive water extraction method from remote sensing image based on NDWI. Journal of the Indian Society of Remote Sensing, 40, 421–433. https://doi.org/10.1007/s12524-011-0162-7

    Article  Google Scholar 

  8. Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002

    Article  Google Scholar 

  9. Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698

    Article  Google Scholar 

  10. Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., & Atkinson, P. M. (2019). Joint deep learning for land cover and land use classification. Remote Sensing of Environment, 221, 173–187. https://doi.org/10.1016/j.rse.2018.11.014

    Article  Google Scholar 

  11. Ghosh, M. K., Kumar, L., & Roy, C. (2015). Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 137–144. https://doi.org/10.1016/j.isprsjprs.2014.12.009

    Article  Google Scholar 

  12. Li, L., Yan, Z., Shen, Q., Cheng, G., Gao, L., & Zhang, B. (2019). Water body extraction from very high spatial resolution remote sensing data based on fully convolutional networks. Remote Sensing, 11(10), 1162. https://doi.org/10.3390/rs11101162

    Article  Google Scholar 

  13. Yang, Z., Ghadamyari, M., Khorramdel, H., Alizadeh, S. M. S., Pirouzi, S., Milani, M., Ghadimi, N., et al. (2021). Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems. Renewable and Sustainable Energy Reviews, 148, 111295. https://doi.org/10.1016/j.rser.2021.111295

    Article  Google Scholar 

  14. Dehghani, M., Ghiasi, M., Niknam, T., Kavousi-Fard, A., Shasadeghi, M., Ghadimi, N., & Taghizadeh-Hesary, F. (2020). Blockchain-based securing of data exchange in a power transmission system considering congestion management and social welfare. Sustainability, 13(1), 90. https://doi.org/10.3390/su13010090

    Article  Google Scholar 

  15. Mehrpooya, M., Ghadimi, N., Marefati, M., & Ghorbanian, S. A. (2021). Numerical investigation of a new combined energy system includes parabolic dish solar collector, Stirling engine and thermoelectric device. International Journal of Energy Research, 45(11), 16436–16455. https://doi.org/10.1002/er.6891

    Article  Google Scholar 

  16. Xu, Z., Sheykhahmad, F. R., Ghadimi, N., & Razmjooy, N. (2020). Computer-aided diagnosis of skin cancer based on soft computing techniques. Open Medicine, 15(1), 860–871.

    Article  Google Scholar 

  17. Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR Band. Remote Sensing, 8(4), 354. https://doi.org/10.3390/rs8040354

    Article  Google Scholar 

  18. Jiang, W., He, G., Pang, Z., Guo, H., Long, T., & Ni, Y. (2020). Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery. Remote Sensing Letters, 11(3), 265–273. https://doi.org/10.1080/2150704X.2019.1708501

    Article  Google Scholar 

  19. Skakun, S., Vermote, E. F., Artigas, A. E. S., Rountree, W. H., & Roger, J. C. (2020). An experimental sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA GSFC. International Journal of Applied Earth Observation and Geoinformation, 95, 102253. https://doi.org/10.1016/j.jag.2020.102253

    Article  Google Scholar 

  20. Ssekyanzi, A., Nevejan, N., Van der Zande, D., Brown, M. E., & Van Stappen, G. (2021). Identification of potential surface water resources for inland aquaculture from sentinel-2 images of the rwenzori region of Uganda. Water, 13(19), 2657. https://doi.org/10.3390/w13192657

    Article  Google Scholar 

  21. Alesheikh, A. A., Ghorbanali, A., & Nouri, N. (2007). Coastline change detection using remote sensing. International Journal of Environmental Science and Technology, 4, 61–66. https://doi.org/10.1007/BF03325962

    Article  Google Scholar 

  22. McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  23. Ning, F. S., & Lee, Y. C. (2021). Combining spectral water indices and mathematical morphology to evaluate surface water extraction in Taiwan. Water, 13(19), 2774. https://doi.org/10.3390/w13192774

    Article  Google Scholar 

  24. Guo, Q., Wu, X., Sang, X., Fu, Y., Zang, Y., & Gong, X. (2020). An integrated study on change detection and environment evaluation of surface water. Applied Water Science, 10(1), 1–15. https://doi.org/10.1007/s13201-019-1109-3

    Article  Google Scholar 

  25. Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029

    Article  Google Scholar 

  26. Zhai, K., Wu, X., Qin, Y., & Du, P. (2015). Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spatial Information Science, 18(1), 32–42. https://doi.org/10.1080/10095020.2015.1017911

    Article  Google Scholar 

  27. Piyoosh, A. K., & Ghosh, S. K. (2017). Semi-automatic mapping of anthropogenic impervious surfaces in an urban/suburban area using Landsat 8 satellite data. GIScience & Remote Sensing, 2017, 1–24. https://doi.org/10.1080/15481603.2017.1282414

    Article  Google Scholar 

  28. Verma, P., & Kumar Ghosh, S. (2019). Classification of glacial lakes using an integrated approach of DFPS technique and gradient analysis using Sentinel 2A data. Geocarto International, 34(10), 1075–1088. https://doi.org/10.1080/10106049.2018.1469677

    Article  Google Scholar 

  29. Wang, Y., Lv, H., Deng, R., & Zhuang, S. (2020). A comprehensive survey of optical remote sensing image segmentation methods. Canadian Journal of Remote Sensing. https://doi.org/10.1080/07038992.2020.1805729

    Article  Google Scholar 

  30. Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote sensing, 6(5), 4173–4189. https://doi.org/10.3390/rs6054173

    Article  Google Scholar 

  31. Gao, H., Wang, L., Jing, L., & Xu, J. (2016). An effective modified water extraction method for Landsat-8 OLI imagery of mountainous plateau regions. In IOP conference series: earth and environmental science (Vol. 34, No. 1, p. 012010). IOP Publishing. https://doi.org/10.1088/1755-1315/34/1/012010

  32. Guo, Q., Pu, R., Li, J., & Cheng, J. (2017). A weighted normalized difference water index for water extraction using Landsat imagery. International Journal of Remote Sensing, 38(19), 5430–5445. https://doi.org/10.1080/01431161.2017.1341667

    Article  Google Scholar 

  33. Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., & Qin, Y. (2017). Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water, 9(4), 256. https://doi.org/10.3390/w9040256

    Article  Google Scholar 

  34. Wang, Y., Li, X., Zhou, P., Jiang, L., & Du, Y. (2022). AHSWFM: Automated and hierarchical surface water fraction mapping for small water bodies using sentinel-2 images. Remote Sensing, 14(7), 1615. https://doi.org/10.3390/rs14071615

    Article  Google Scholar 

  35. Cui, Y., Yan, Z., Wang, J., Hao, S., & Liu, Y. (2022). Deep learning–based remote sensing estimation of water transparency in shallow lakes by combining Landsat 8 and Sentinel 2 images. Environmental Science and Pollution Research, 29(3), 4401–4413.

    Article  Google Scholar 

  36. Islam, K., Jashimuddin, M., Nath, B., & Nath, T. K. (2018). Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 37–47. https://doi.org/10.1016/j.ejrs.2016.12.005

    Article  Google Scholar 

  37. Acharya, T., Subedi, A., & Lee, D. (2018). Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal. Sensors, 18(8), 2580. https://doi.org/10.3390/s18082580

    Article  Google Scholar 

  38. Nandi, D., Chowdhury, R., Mohapatra, J., Mohanta, K., & Ray, D. (2018). Automatic delineation of water bodies using multiple spectral indices. Themed Section: Engineering and Technology, 4(4), 498–512.

    Google Scholar 

  39. Arreola-Esquivel, M., Delgadillo-Herrera, M., Toxqui-Quitl, C., & Padilla-Vivanco, A. (2019). Index-based methods for water body extraction in satellite data. In Applications of digital image processing XLII (Vol. 11137, p. 111372N). International Society for Optics and Photonics. https://doi.org/10.1117/12.2529756

  40. Parihar, S. K., Borana, S. L., & Yadav, S. K. (2019). Comparative evaluation of spectral indices and sensors for mapping of urban surface water bodies in jodhpur area: Smart & sustainable growth. In 2019 international conference on computing, communication, and intelligent systems (ICCCIS) (pp. 484–489). IEEE. https://doi.org/10.1109/ICCCIS48478.2019.8974505

  41. Mukherjee, J., Mukherjee, J., & Chakravarty, D. (2019). Automated seasonal separation of mine and non mine water bodies from landsat 8 OLI/TIRS using clay mineral and iron oxide ratio. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2019.2895385

    Article  Google Scholar 

  42. Wang, J., Ding, J., Li, G., Liang, J., Yu, D., Aishan, T., & Liu, J. (2019). Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. CATENA, 177, 189–201. https://doi.org/10.1016/j.catena.2019.02.020

    Article  Google Scholar 

  43. Wang, X., Ling, F., Yao, H., Liu, Y., & Xu, S. (2019). unsupervised sub-pixel water body mapping with sentinel-3 OLCI image. Remote Sensing, 11(3), 327. https://doi.org/10.3390/rs11030327

    Article  Google Scholar 

  44. Meng, L., Zhang, Z., Zhang, W., Ye, J., Wu, C., Chen, D., & Song, C. (2019). An automatic extraction method for lakes and reservoirs using satellite images. IEEE Access, 7, 62443–62456. https://doi.org/10.1109/ACCESS.2019.2916148

    Article  Google Scholar 

  45. Nguyen, U. N., Pham, L. T., & Dang, T. D. (2019). An automatic water detection approach using landsat 8 OLI and google earth engine cloud computing to map lakes and reservoirs in New Zealand. Environmental monitoring and assessment, 191(4), 235. https://doi.org/10.1007/s10661-019-7355-x

    Article  Google Scholar 

  46. Goffi, A., Stroppiana, D., Brivio, P. A., Bordogna, G., & Boschetti, M. (2020). Towards an automated approach to map flooded areas from Sentinel-2 MSI data and soft integration of water spectral features. International Journal of Applied Earth Observation and Geoinformation, 84, 101951. https://doi.org/10.1016/j.jag.2019.101951

    Article  Google Scholar 

  47. Pena-Regueiro, J., Sebastiá-Frasquet, M. T., Estornell, J., & Aguilar-Maldonado, J. A. (2020). Sentinel-2 application to the surface characterization of small water bodies in Wetlands. Water, 12(5), 1487. https://doi.org/10.3390/w12051487

    Article  Google Scholar 

  48. Yang, X., Chen, Y., & Wang, J. (2020). Combined use of sentinel-2 and landsat 8 to monitor water surface area dynamics using Google earth engine. Remote Sensing Letters, 11(7), 687–696. https://doi.org/10.1080/2150704X.2020.1757780

    Article  Google Scholar 

  49. Shen, L., & Li, C. (2010). Water body extraction from landsat ETM+ Imagery using adaboost algorithm. In Proceedings of 18th international conference on geoinformatics, 18–20 June 2010, Beijing, China (pp. 1–4). https://doi.org/10.1109/Geoinformatics.2010.5567762

  50. Rouse, J. W.; Haas, R. H.; Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS (Earth Resources Technology Satellite). In Proceedings of third earth resources technology satellite symposium, Greenbelt, ON, Canada, 10–14 (Vol. SP-351, pp. 309–317).

  51. Chen, J., Gong, P., He, C., Pu, R., & Shi, P. (2003). Land-use/land-cover change detection using improved change-vector analysis. PhotogrammEng Remote Sensing, 69(4), 369–379. https://doi.org/10.14358/PERS.69.4.369

    Article  Google Scholar 

  52. Azzouzi, S. A., Vidal, A., & Bentounes, H. A. (2015). Enhancement of the double flexible pace search threshold determination for change vector analysis. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 599. https://doi.org/10.5194/isprsarchives-XL-7-W3-599-2015

    Article  Google Scholar 

  53. Shubho, M. T. H., Islam, S. R., Ayon, B. D., & Islam, I. (2015). An improved semi-automatic segmentation approach to land cover mapping for identification of land cover change and trend. International Journal of Environmental Science and Technology, 12(8), 2593–2602. https://doi.org/10.1007/s13762-014-0649-1

    Article  Google Scholar 

  54. Li, J., & Roy, D. P. (2017). A global analysis of Sentinel-2a, Sentinel-2b, and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing. https://doi.org/10.3390/rs9090902

    Article  Google Scholar 

  55. Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., & Qiao, Z. (2020). Mapping cropping intensity in China using time-series Landsat and Sentinel-2 images and Google earth engine. Remote Sensing of Environment, 239, 111624. https://doi.org/10.1016/j.rse.2019.111624

    Article  Google Scholar 

Download references

Funding

All authors declared that they have no affiliations with or involvement in any organization or field with any financial or non-financial interest in the subject matter or materials discussed in this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Singh Choudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S.S., Ghosh, S.K. Surface Water Area Extraction by Using Water Indices and DFPS Method Applied to Satellites Data. Sens Imaging 23, 33 (2022). https://doi.org/10.1007/s11220-022-00403-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-022-00403-4

Keywords

Navigation