Skip to main content
Log in

Highly Selective Dimethylamine Vapour Sensors Based on Spray Deposited β-Bi2O3 Nanospheres at Low Temperature

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The nanostructured β-Bi2O3 thin film was deposited on glass substrates by chemical spray pyrolysis technique using the mixture of bismuth nitrate pentahydrate with deionized water and nitric acid as a precursor solution. The thin film deposition condition and the precursor salt concentration were optimized to obtain nanostructured β-Bi2O3 thin films. The film obtained from 0.05 M of bismuth nitrate pentahydrate aqueous solution was sprayed at the rate of 3 mL/min. on pre-heated glass substrate at the temperature of 250 °C yielded spherical shaped well-connected nanocrystallites, which has large surface area. The diffraction peak position in XRD confirmed the formation of crystalline β-Bi2O3 with tetragonal crystal structure. Further sensing characteristics of β-Bi2O3 thin film towards various dimethylamine (DMA) vapour concentration have been investigated. The sensing results revealed that β-Bi2O3 thin film shows good sensing response towards dimethylamine vapour at an ambient temperature. The minimum detection limit was found to be 0.5 ppm, and sensors show shorter response and recovery time (28 s and 10 s). The dimethylamine sensing characteristics (response, sensitivity, electrical hysteresis, selectivity in mixed vapour environment, stability) of β-Bi2O3 thin films were discussed and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang, L., Zhao, J., Lu, H., Li, L., Zheng, J., Zhang, J., Li, H., & Zhu, Z. (2012). Highly sensitive and selective dimethylamine sensors based on hierarchical ZnO architectures composed of nanorods and nanosheet-assembled microspheres. Sensors and Actuators B : Chemical, 71–172, 1101–1109.

    Article  Google Scholar 

  2. Yu, C., Liu, G., Zuo, B., & Tang, R. (2009). A novel gaseous dimethylamine sensor utilizing cataluminescence on zirconia nanoparticles. Luminescence, 24, 282–289.

    Article  Google Scholar 

  3. OSHA< https://www.osha.gov/dts/chemicalsampling/data/CH_235700.html>

  4. Martínez, Y. M., Falcó, P. C., & Hernández, R. H. (2004). A method for the determination of dimethylamine in air by collection on solid support sorbent with subsequent derivatization and spectrophotometric analysis. Journal of Chromatography A, 1059, 17–24.

    Article  Google Scholar 

  5. Teerlink, T., Hennekes, M. W. T., Mulder, C., & Brulez, H. F. H. (1997). Determination of dimethylamine in biological samples by high performance liquid chromatography. Journal of Chromatography B, 691, 269–276.

    Article  Google Scholar 

  6. Pericas, C. C., Hernandez, R. H., & Falco, P. C. (2005). A new selective method for dimethylamine in water analysis by liquid chromatography using solid-phase microextraction and two-stage derivatization with o-phthalaldialdehyde and 9-fluorenylmethyl chloroformate. Talanta, 66, 1139–1145.

    Article  Google Scholar 

  7. Tsikas, D., Thum, T., Becker, T., Pham, V. V., Chobanyan, K., Mitschke, A., Beckmann, B., Gutzki, F. M., Bauersachs, J., & Stichtenoth, D. O. (2007). Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography–mass spectrometry as pentafluorobenzamide derivative: Evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. Journal of Chromatography B, 851, 229–239.

    Article  Google Scholar 

  8. Zlotorzynska, E. D., & Maruszak, W. (1998). Determination of dimethylamine and other low-molecular-mass amines using capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography B, 714, 77–85.

    Article  Google Scholar 

  9. Timm, M., & Jørgensen, B. M. (2002). Simultaneous determination of ammonia, dimethylamine, trimethylamin e and trimethylamine- n-oxide in fish extracts by capillary electrophoresis with indirect UV-detection. Food Chemistry, 76, 509–518.

    Article  Google Scholar 

  10. Roy, S., & Basu, S. (2004). ZnO thin film sensors for detecting dimethyl- and trimethyl-amine vapors. Journal of Material Science: Materials in Electronics, 15, 321–326.

    Google Scholar 

  11. Takao, Y., Nakanishi, M., Kawaguchi, T., Shimizu, Y., & Egashira, M. (1995). Semiconductor dimethylamine gas sensors with high sensitivity and selectivity. Sensors and Actuators B: Chemical, 24–25, 375–379.

    Article  Google Scholar 

  12. Gujara, T. P., Shindea, V. R., Lokhandea, C. D., Maneb, R. S., & Han, S. H. (2005). Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: Annealing effect. Applied Surface Science, 250, 161–167.

    Article  Google Scholar 

  13. Soitah, T. N., Chunhui, Y., Yong, Y., Yinghua, N., & Liang, S. (2010). Properties of Bi2O3 thin films prepared via a modified Pechini route. Current Applied Physics, 10, 1372–1377.

    Article  Google Scholar 

  14. Leontie, L., Caraman, M., Alexe, M., & Harnagea, C. (2002). Structural and optical characteristics of bismuth oxide thin films. Surface Science, 507–510, 480–485.

    Article  Google Scholar 

  15. Bandoli, G., Barreca, D., Brescacin, E., Rizzi, G. A., & Tondello, E. (1996). Pure and mixed phase Bi2O3 thin films obtained by metal organic chemical vapor deposition. Chemical Vapour Deposition, 2, 238–242.

    Article  Google Scholar 

  16. Thomas, M. (2013). Review of Bi2O3-based glasses for electronics and related applications. International Materials Reviews, Maney Publishing, 58, 3–40.

    Article  Google Scholar 

  17. Gou, X., Li, R., Wang, G., Chen, Z., & Wexler, D. (2009). Room temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology, 20, 495–501.

    Article  Google Scholar 

  18. Ali, R. S. (2014). Structural and optical properties of nanostructured bismuth oxide. International Letters of Chemistry, Physics and Astronomy, 34, 64–72.

    Article  Google Scholar 

  19. Sammes, N. M., Tompsett, G. A., NaÈfea, H., & Aldinger, F. (1999). Bismuth based oxide electrolytes-structure and ionic conductivity. Journal of European Ceramic Society, 19, 1801–1826.

    Article  Google Scholar 

  20. Morasch, J., Lil, S., Brötz, J., Jaegermann, W., & Klein, A. (2014). Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties. Physica Status Solidi, A, 211, 93–100.

    Article  Google Scholar 

  21. Park, S., Jun, J., Kim, H. W., & Lee, C. (2009). Preparation of one dimensional Bi2O3-core/ZnO-shell structures by thermal evaporation and atomic layer deposition. Solid State Communication, 149, 315–318.

    Article  Google Scholar 

  22. Weidong, H., Wei, Q., Xiaohong, W., Xianbo, D., Long, C., & Zhaohua, J. (2007). The photocatalytic properties of bismuth oxide films prepared through the sol–gel method. Thin Solid Films, 515, 5362–5365.

    Article  Google Scholar 

  23. Mota, K. B., Bizarro, M., Castellino, M., Tagliaferro, A., Hernándezd, A., & Rodil, S. E. (2015). Spray deposited β-Bi2O3 nanostructured films with visible photocatalytic activity for solar water treatment. Photochemical and Photo Biological Sciences, 14, 1110–1119.

    Article  Google Scholar 

  24. Jeyaprakash, B. G., Kesavan, K., Ashok Kumar, R., Mohan, S., & Amalaran, A. (2011). Temperature dependent grain-size and microstrain of CdO thin films prepared by spray pyrolysis method. Bulletin of Material Science, 34, 601–605.

    Article  Google Scholar 

  25. Pandeeswari, R., & Jeyaprakash, B. G. (2014). High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sensors and Actuators B: Chemical, 195, 206–214.

    Article  Google Scholar 

  26. Eneşca, A., & Duţă, A. (2010). The influence of the precursor concentration on the properties of SnO2 thin films. Thin Solid Films, 519, 568–572.

    Article  Google Scholar 

  27. Denisov, V. N., Ivlev, A. N., Lipin, A. S., Mavrin, B. N., & Rlov, V. G. (1997). Raman spectra and lattice dynamics of single-crystal α-Bi2O3. Journal of Physics: Condensed Matter, 9, 4967–4978.

    Google Scholar 

  28. Cabot, A., Marsal, A., Arbiol, J., & Morante, J. R. (2004). Bi2O3 as a selective sensing material for NO detection. Sensors and Actuators B: Chemical, 99, 74–89.

    Article  Google Scholar 

  29. Prekajski, M., Kremenović, A., Babić, B., Rosić, M., Matović, B., Mihajlović, A. R., & Radović, M. (2010). Room-temperature synthesis of nanometric α-Bi2O3. Material Letters, 64, 2247–2250.

    Article  Google Scholar 

  30. Yang, L. L., Han, Q. F., Zhao, J., Zhu, J. W., Wang, X., & Ma, W. H. (2014). Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method and their photocatalytic activity. Journal of Alloys and Compounds, 614, 353–359.

    Article  Google Scholar 

  31. Barsan, N., & Weimar, U. (2001). Conduction model of metal oxide gas sensors. Journal of Electroceramics, 7, 143–167.

    Article  Google Scholar 

  32. Nie, M. (2008). Organic chemistry. Metallurgical Industry Press.

    Google Scholar 

  33. Cao, X., Song, T., & Wang, X. (1994). Inorganic Chemistry (3rd ed.). Higher Education Press.

    Google Scholar 

  34. Roy, S., & Basu, S. (2004). ZnO thin film sensors for detecting dimethyl- and trimethylamine vapours. Journal of Material Science: Materials in Electronics, 15, 321–326.

    Google Scholar 

  35. Jamalabadi, H., Varnosfaderani, A. M., & Alizadeh, N. (2017). PPy-Metal oxide hybrid nanocomposite sensor array for simultaneous determination of volatile organic amines in high humid atmosphere. IEEE Sensor Journal, 17, 8282–8289.

    Article  Google Scholar 

  36. Sovizi, M., & Somayeh Mirzakhani, R. (2020). A chemiresistor sensor modified with lanthanum oxide nanoparticles as a highly sensitive and selective sensor for dimethylamine at room temperature. New Journal Chemistry, 44, 4927–4934.

    Article  Google Scholar 

  37. Srividhya, G., Abinaya, M., Veena, M., Veeraprabu, K., & Sridharan, M. (2020). Highly selective dimethylamine sensing performance of TiO2 thin films at room temperature. Journal of Nanoscience and Nanotechnology, 20, 3133–3139.

    Google Scholar 

  38. Vardan, G., Ponzoni, A., Kholmanovc, I., Natile, M. M., Comini, E., & Sberveglieri, G. (2020). Highly sensitive and selective detection of dimethylamine through Nb doping of TiO2 nanotubes for potential use in seafood quality control. Sensors and Actuators: B Chemical, 303, 127217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Jeyaprakash.

Ethics declarations

Conflict of interest

This author declares no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandeeswari, R., Sonia, T., Balamurugan, D. et al. Highly Selective Dimethylamine Vapour Sensors Based on Spray Deposited β-Bi2O3 Nanospheres at Low Temperature. Sens Imaging 23, 1 (2022). https://doi.org/10.1007/s11220-021-00371-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-021-00371-1

Keywords

Navigation