Intelligent Integration of Neutron, Density and Gamma Ray Data for Subsurface Characterization


Earth subsurface recognition through describing the underground layers can be carried out using physical measurements to obtain clearer and more accurate subsurface model. This can be conducted applying well logging method. Among various information that can be provided by different well logging sensors, neutron, density and gamma-ray data are the most considerable in subsurface type determination. However, current analysis of these data stills a subjective task which adds a variable confidence interval to the obtained results. In this study, a real time decision level fusion system uses fuzzy logic approach is introduced to incorporate neutron, density, and gamma-ray information in order to provide more specific interpretation of the subsurface structures. Results of the proposed approach agreed well with the results of an offline subsurface determination program, with an average ratio of about 89.75%. The suggested approach was evaluated against real data from eight wells, and the results were promising to yield more objective interpretation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Kelkar, M., Perez, G., & Chopra, A. (2002). Applied geostatistics for reservoir characterization. Richardson, TX: Society of Petroleum Engineers.

    Google Scholar 

  2. 2.

    Chang, H. C., Kopaska-Merkel, D. C., Chen, H. C., & Durrans, S. R. (2000). Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system. Computers & Geosciences, 26, 591–601.

    Google Scholar 

  3. 3.

    Maiti, S., & Tiwari, R. K. (2010). Neural network modeling and an uncertainty analysis in Bayesian framework: A case study from the KTB borehole site. Journal of Geophysical Research: Solid Earth, 115, 1–28.

    Google Scholar 

  4. 4.

    Reider, M. H. (2002). The geological interpretation of well logs (2nd ed.). Aberdeen: Rider-French Consulting.

    Google Scholar 

  5. 5.

    Ellis, D. V., & Singer, J. M. (2007). Well logging for earth scientists (2nd ed.). Dordrecht: Springer.

    Google Scholar 

  6. 6.

    Johnson, D. E., & Pile, K. E. (2006). Well logging in nontechnical language (2nd ed.). Tulsa: PennWell Corporation.

    Google Scholar 

  7. 7.

    Horrocks, T., Holden, E. J., & Wedge, D. (2015). Evaluation of automated lithology classification architectures using highly-sampled wireline logs for coal exploration. Computers & Geosciences, 83, 209–218.

    Google Scholar 

  8. 8.

    Akinyokun, O. C., Enikanselu, P. A., Adeyemo, A. B., & Adesida, A. (2009). Well log interpretation model for the determination of lithology and fluid contents. Pacific Journal of Science and Technology, 10, 507–517.

    Google Scholar 

  9. 9.

    Jiang, J., Rui, Z., Hazlett, R., & Lu, J. (2019). An integrated technical-economic model for evaluation CO2 enhanced oil recovery development. Applied Energy, 247, 191–211.

    Google Scholar 

  10. 10.

    Kaźmierczuk, M., & Jarzyna, J. (2006). Improvement of lithology and saturation determined from well logging using statistical methods. Acta Geophysica, 54(4), 378–398.

    Google Scholar 

  11. 11.

    Luthi, S. (2001). Geological well logs: Their use in reservoir modeling (2nd ed.). Berlin, Heidelberg: Springer.

    Google Scholar 

  12. 12.

    Bassiouni, Z. (1994). Theory, measurement, and interpretation of well logs (1st ed.). Richardson, TX: SPE textbook series.

    Google Scholar 

  13. 13.

    Oberto, S. (2008). The well logging handbook. Paris: Editions Technips.

    Google Scholar 

  14. 14.

    Hearst, J. R., Nelson, P. H., & Paillet, F. L. (2000). Well logging for physical properties: A handbook for geophysicists, geologists, and engineers (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  15. 15.

    Al-Anazi, A., & Gates, I. D. (2010). Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Computers & Geosciences, 36, 1494–1503.

    Google Scholar 

  16. 16.

    Irani, R., & Nasimi, R. (2011). Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir. Expert Systems with Applications, 38, 9862–9866.

    Google Scholar 

  17. 17.

    Arpat, G. B., Gumrah, F., & Yeten, B. (1998). The neighborhood approach to prediction of permeability from wireline logs and limited core plug analysis data using backpropagation artificial neural networks. Journal of Petroleum Science and Engineering, 20, 1–8.

    Google Scholar 

  18. 18.

    Leite, V. R. C., Silva, P. M., Gattass, M., & Silva, A. C. (2013). Analysis of ensemble methods applied to lithology classification from well logs. In Proceedings of 13th International Congress of the Brazilian Geophysical Society and Expogef, Rio de Janeiro, Brazil, 26–29 August, pp. 949–952.

  19. 19.

    Harris, J., & Grunsky, E. (2015). Predictive lithological mapping of Canada’s north using random forest classification applied to geophysical and geochemical data. Computers & Geosciences, 80(1), 9–25.

    Google Scholar 

  20. 20.

    Gifford, C. M., & Agah, A. (2010). Collaborative multi-agent rock facies classification from wire line well log data. Engineering Applications of Artificial Intelligence, 23(7), 1158–1172.

    Google Scholar 

  21. 21.

    Tang, H., & White, C. D. (2008). Multivariate statistical log–log-facies classification on a shallow marine reservoir. Journal of Petroleum Science and Engineering, 61(2), 88–93.

    Google Scholar 

  22. 22.

    Konaté, A. A., et al. (2017). Lithology and mineralogy recognition from geochemical logging tool data using multivariate statistical analysis. Applied Radiation and Isotopes, 128(1), 55–67.

    Google Scholar 

  23. 23.

    Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., & Bui, D. T. (2017). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 151, 147–160.

    Google Scholar 

  24. 24.

    Vikrant, A. D., & Mario, R. E. (2018). Evaluating the boosting approach to machine learning for formation lithology classification. In Proceedings of the 13th international symposium on process systems engineeringPSE 2018, 1–5 July, San Diego, California, USA, pp. 1465–1470.

  25. 25.

    Teh, W., Willhite, G. P., & Doveton, J. (2012). Improved reservoir characterization in the ogallah field using petrophysical classifiers within electrofacies. In Proceedings SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, pp. 1–13.

  26. 26.

    Dong, S., Wang, Z., & Zeng, L. (2016). Lithology identification using kernel Fisher discriminant analysis with well logs. Journal of Petroleum Science and Engineering, 143, 95–102.

    Google Scholar 

  27. 27.

    Ma, Y. Z. (2011). Lithofacies clustering using principal component analysis and neural network: Applications to wireline logs. Mathematical Geosciences, 43(4), 401–419.

    Google Scholar 

  28. 28.

    Gu, Y., Bao, Z., & Rui, Z. (2018). Complex lithofacies identification using improved probabilistic neural networks. Petrophysics, 59(2), 245–267.

    Google Scholar 

  29. 29.

    Karmakar, M., Maiti, S., Singh, A., Ojha, M., & Maity, B. S. (2017). Mapping of rock types using a joint approach by combining the multivariate statistics, self-organizing map and bayesian neural networks: An example from IODP 323 site. Marine Geophysical Research, 19, 1–13.

    Google Scholar 

  30. 30.

    Zhu, Q.-Y., et al. (2005). Evolutionary extreme learning machine. Pattern Recognition, 38(10), 1759–1763.

    MATH  Google Scholar 

  31. 31.

    Yunxin, X., Chenyang, Z., Wen, Z., Zhongdong, L., Xuan, L., & Mei, T. (2017). Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances. Journal of Petroleum Science and Engineering, 160, 182–193.

    Google Scholar 

  32. 32.

    Sebtosheikh, M. A., & Salehi, A. (2015). Lithology prediction by support vector classifiers using inverted seismic attributes data and petrophysical logs as a new approach and investigation of training dataset size effect on its performance in a heterogeneous carbonate reservoir. Journal of Petroleum Science and Engineering, 134, 143–149.

    Google Scholar 

  33. 33.

    Malki, H. A., Baldwin, J. L., & Kwari, M. A. (1996). Estimating permeability by use of neural networks in thinly bedded shaly gas sands. SPE Computer Applications, 8, 58–62.

    Google Scholar 

  34. 34.

    Tonn, T. (2002). Neural network seismic reservoir characterization in a heavy oil reservoir. Lead Edge, 21(3), 309–312.

    Google Scholar 

  35. 35.

    Raeesi, M., Moradzadeh, A., DoulatiArdejani, F., & Rahimi, M. (2012). Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks. Journal of Petroleum Science and Engineering, 82, 151–165.

    Google Scholar 

  36. 36.

    Misra, S., Swain, A. K., & Panigrahi, B. K. (2009). Estimation of lithologic parameters from seismic data using genetic algorithm. In World Congress on Nature & Biologically Inspired Computing “NaBIC”, Coimbatore, India, pp. 1373–1377.

  37. 37.

    Shao, Y., & Chen, Q. (2008). Application genetic neural network in lithology recognition and prediction: Evidence from China. In 2nd international symposium on intelligent information technology application, Shanghai, China, pp. 536–539.

  38. 38.

    Sahoo, S., & Jha, M. K. (2017). Pattern recognition in lithology classification: Modeling using neural networks, self-organizing maps and genetic algorithms. Hydrogeology Journal, 25(2), 311–330.

    Google Scholar 

  39. 39.

    Mou, D., & Wang, Z.-W. (2015). A comparison of binary and multiclass support vector machine models for volcanic lithology estimation using geophysical log data from Liaohe basin, China. Exploration Geophysics, 47(2), 145–149.

    Google Scholar 

  40. 40.

    Al-Anazi, A., & Gates, I. D. (2010). A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology, 114, 267–277.

    Google Scholar 

  41. 41.

    Nasimi, R., Shahbazian, M., Irani, R. (2010). A hybrid particle swarm optimization-neural network strategy for permeability estimation of the reservoir. In IEEE international symposium of power electronics, electrical drivers, and automation and motion conference, Pisa, Italy, pp. 697–702.

  42. 42.

    Saemi, M., Ahmedi, M., & Yazdian, V. A. (2007). Design of neural network using genetic algorithm for the permeability estimation of the reservoir. Journal of Petroleum Science and Engineering, 59, 97–105.

    Google Scholar 

  43. 43.

    Silva, A. A., et al. (2015). Artificial neural networks to support petrographic classification of carbonate-siliciclastic rocks using well logs and textural information. Journal of Applied Geophysics, 117(1), 118–125.

    Google Scholar 

  44. 44.

    Mahmoodi, O., Smith, R. S., & Tinkham, D. K. (2016). Supervised classification of down-hole physical properties measurements using neural network to predict the lithology. Journal of Applied Geophysics, 124, 17–26.

    Google Scholar 

  45. 45.

    Liping, Z., Hongqi, L., Zhongguo, Y., Chengyang, L., & Yile, A. (2018). Intelligent logging lithological interpretation with convolution neural networks. Petrophysics, 59(6), 779–810.

    Google Scholar 

  46. 46.

    Deng, C., Pan, H., Fang, S., Konaté, A. A., & Qin, R. (2017). Support vector machine as an alternative method for lithology classification of crystalline rocks. Journal of Geophysics and Engineering, 14, 341–349.

    Google Scholar 

  47. 47.

    Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017). Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31(9), 2761–2775.

    Google Scholar 

  48. 48.

    Gu, Y., Bao, Z., Song, X., Patil, S., & Ling, K. (2019). Complex lithology prediction using probabilistic neural network improved by continuous restricted Boltzmann machine and particle swarm optimization. Journal of Petroleum Science and Engineering, 179, 966–978.

    Google Scholar 

  49. 49.

    Salehi, S. M., & Honarvar, B. (2014). Automatic identification of formation lithology from well log data: A machine learning approach. Journal of Petroleum Science Research, 3(2), 73–82.

    Google Scholar 

  50. 50.

    Corina, A. N., & Hovda, S. (2018). Automatic lithology prediction from well logging using kernel density estimation. Journal of Petroleum Science and Engineering, 170, 664–674.

    Google Scholar 

  51. 51.

    Giniyatullin, K. G., Valeeva, A. A., & Smirnova, E. V. (2017). Application of cluster and discriminant analyses to diagnose lithological heterogeneity of the parent material according to its particle-size distribution. Eurasian Soil Science, 50(8), 917–924.

    Google Scholar 

  52. 52.

    Yang, H., Pan, H., Ma, H., Konaté, A. A., Yao, J., & Guo, B. (2016). Performance of the synergetic wavelet transform and modified K-means clustering in lithology classification using nuclear log. Journal of Petroleum Science and Engineering, 144, 1–9.

    Google Scholar 

  53. 53.

    Zorski, T., Ossowski, A., Srodon, J., & Kawiak, T. (2011). Evaluation of mineral composition and petrophysical parameters by the integration of core analysis data and wireline well log data: The Carpathian Foredeep case study. Clay Minerals, 46(1), 25–45.

    Google Scholar 

  54. 54.

    Mendel, J. M. (2001). Uncertain rule-based fuzzy logic systems, introduction and new directions. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  55. 55.

    Mendel, J. M. (2003). Fuzzy sets for words: A new beginning. In Proceedings of IEEE conference on fuzzy systems “FUZZ’ 03”, St. Louis, MO, USA, pp. 37–42.

  56. 56.

    Novak, V., Perfilieva, I., & Mockor, J. (1999). Mathematical principles of fuzzy logic (1st ed.). New York: Springer.

    Google Scholar 

  57. 57.

    Elkattan, M. (2018). Fuzzy logic approach for airborne gravimeter power system control. In Proceedings of international conference on innovative trends in computer engineering “ITCE2018”, 19–21 February, Aswan, Egypt, pp. 8–12.

  58. 58.

    Celikyilmaz, A., & Türksen, I. B. (2009). Modeling uncertainty with fuzzy logic, with recent theory and applications (1st ed.). Berlin, Heidelberg: Springer.

    Google Scholar 

  59. 59.

    Bede, B. (2013). Mathematics of fuzzy sets and fuzzy logic (1st ed.). Berlin, Heidelberg: Springer.

    Google Scholar 

  60. 60.

    Hall, D. L., & McMullen, S. A. H. (2004). Mathematical techniques in mutli-sensor data fusion (2nd ed.). Norwood, MA: Artech House.

    Google Scholar 

  61. 61.

    Elkattan, M., Osman, A., Salem, A., Kamal, A., & El-Hennawy, H. (2012). Integrated detection of landmines using neutron backscattering and magnetic gradient techniques. In 22nd international geophysical conference & exhibition, Brisbane, Australia, 26–29 February, pp. 1–4.

  62. 62.

    Fourati, H. (2016). Multisensor data fusion: From algorithms and architectural design to applications. New York, NY: CRC Press LLC.

    Google Scholar 

  63. 63.

    Elkattan, M., Soliman, F., Megahid, R. M., Kamel, A., & El-Hennawy, H. (2015). Integrated detection of landmines using nuclear and geophysical sensors. In S. Y. Yurish (Ed.), Sensors and signals (pp. 113–134). Barcelona: IFSA Publishing, S. L.

    Google Scholar 

  64. 64.

    Liggins, M. E., Hall, D. L., & James, L. (2009). Handbook of mutlisensor data fusion: theory and practice (2nd ed.). New York, NY: CRC Press LLC.

    Google Scholar 

  65. 65.

    Elkattan, M., Salem, A., Osman, A., Kamel, A., & El-Hennawy, H. (2012). Magnetic gradient and neutron backscattering fusion for landmine detection. In 15th international conference on information fusion, FUSION 2012, Singapore, 9–12 July, pp. 600–606.

  66. 66.

    Mitchell, H. B. (2012). Data fusion concepts and ideas (2nd ed.). Heidelberg, Berlin: Springer.

    Google Scholar 

  67. 67.

    Chang, N. B., & Bai, K. (2018). Mutlisensor data fusion and machine learning for environmental remote sensing. New York, NY: CRC Press LLC.

    Google Scholar 

  68. 68.

    Al-Alfy, I. M., Nabih, M. A., & Eysa, E. A. (2013). Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt. Applied Radiation and Isotopes, 73, 90–95.

    Google Scholar 

  69. 69.

    Al-Alfy, I. M. (2018). Mathematical derivation of density log from total gamma ray and neutron logs in clastic rocks, a case study, Egypt. Applied Radiation and Isotopes, 142, 42–45.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohamed Elkattan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elkattan, M., Al Alfy, I.M. & Elawadi, E. Intelligent Integration of Neutron, Density and Gamma Ray Data for Subsurface Characterization. Sens Imaging 21, 9 (2020).

Download citation


  • Fuzzy logic
  • Decision level fusion
  • Gamma ray sensor
  • Neutron sensor
  • Subsurface