Tone Mapping High Dynamic Range Images by Hessian Multiset Canonical Correlations


Tone mapping algorithms reproduce high dynamic range (HDR) images on low dynamic range images in the standard display devices such as LCD, CRT, projectors, and printers. In this paper, we propose a statistical clustering-based tone mapping technique that would be able to adapt the local content of an image as well as its color. At first, the HDR image is partitioned into many overlapped color patches and we disintegrate each color patch into three segments: patch mean, color variation and color structure. Then based on the color structure component, the extracted color patches are clustered into a number of clusters by k-means clustering technique. For each cluster, the statistical signal processing technique namely Hessian multi set canonical correlations (HesMCC) has been produced to ascertain the transform matrix. Moreover, the HesMCC are fundamentally utilized for performing the dimensionality reduction of patches and to form effective tone mapped images. Contrasting with the current strategies, the procedures in the proposed clustering-based strategy can better adapt image color and its local structures by exploiting the image in the worldwide repetition. Experimental results show that the running time of the proposed method is less about 88.32%, 92%, 68.9%, and 29.4%, while comparing with other existing tone mapping methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Kottayil, N., Valenzise, G., Dufaux, F., & Cheng, I. (2018). Blind quality estimation by disentangling perceptual and noisy features in high dynamic range images. IEEE Transactions on Image Processing, 27, 1512–1525.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Gao, M., Wee, S., & Jeong, J. (2018). Multiscale decomposition based high dynamic range tone mapping method using guided image filter. In 2018 International conference on network infrastructure and digital content (IC-NIDC), Guiyang, China (pp. 30–34).

  3. 3.

    Bist, C., Cozot, R., Madec, G., & Ducloux, X. (2017). Tone expansion using lighting style aesthetics. Computers & Graphics, 62, 77–86.

    Article  Google Scholar 

  4. 4.

    Artusi, A., Mantiuk, R., Richter, T., Korshunov, P., Hanhart, P., Ebrahimi, T., et al. (2016). JPEG XT: A compression standard for HDR and WCG Images [Standards in a Nutshell]. IEEE Signal Processing Magazine, 33, 118–124.

    Article  Google Scholar 

  5. 5.

    Hel-Or, Y., Hel-Or, H., & David, E. (2014). Matching by tone mapping: Photometric invariant template matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 317–330.

    Article  Google Scholar 

  6. 6.

    Narwaria, M., Perreira Da Silva, M., Le Callet, P., & Pepion, R. (2014). Tone mapping based HDR compression: Does it affect visual experience? Signal Processing: Image Communication, 29, 257–273.

    Google Scholar 

  7. 7.

    Boitard, R., Cozot, R., Thoreau, D., & Bouatouch, K. (2014). Zonal brightness coherency for video tone mapping. Signal Processing: Image Communication, 29, 229–246.

    Google Scholar 

  8. 8.

    Ma, K., Yeganeh, H., Zeng, K., & Wang, Z. (2015). High dynamic range image compression by optimizing tone mapped image quality index. IEEE Transactions on Image Processing, 24, 3086–3097.

    MathSciNet  Article  Google Scholar 

  9. 9.

    Kwon, H., Lee, S., Lee, G., & Sohng, K. (2016). Radiance map construction based on spatial and intensity correlations between LE and SE images for HDR imaging. Journal of Visual Communication and Image Representation, 38, 695–703.

    Article  Google Scholar 

  10. 10.

    Sikudova, E., Pouli, T., Artusi, A., Akyuz, A., Banterle, F., Mazlumoglu, Z., et al. (2016). A gamut-mapping framework for color-accurate reproduction of HDR Images. IEEE Computer Graphics and Applications, 36, 78–90.

    Article  Google Scholar 

  11. 11.

    Krasula, L., Narwaria, M., Fliegel, K., & Le Callet, P. (2017). Preference of experience in image tone-mapping: Dataset and framework for objective measures comparison. IEEE Journal of Selected Topics in Signal Processing, 11, 64–74.

    Article  Google Scholar 

  12. 12.

    Duan, J., Bressan, M., Dance, C., & Qiu, G. (2010). Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recognition, 43, 1847–1862.

    Article  Google Scholar 

  13. 13.

    Mai, Z., Mansour, H., Mantiuk, R., Nasiopoulos, P., Ward, R., & Heidrich, W. (2011). Optimizing a tone curve for backward-compatible high dynamic range image and video compression. IEEE Transactions on Image Processing, 20, 1558–1571.

    MathSciNet  Article  Google Scholar 

  14. 14.

    Čadík, M., Wimmer, M., Neumann, L., & Artusi, A. (2008). Evaluation of HDR tone mapping methods using essential perceptual attributes. Computers & Graphics, 32, 330–349.

    Article  Google Scholar 

  15. 15.

    Inan, U. (2002). Lightning effects at high altitudes: Sprites, elves, and terrestrial gamma ray flashes. Comptes Rendus Physique, 3, 1411–1421.

    Article  Google Scholar 

  16. 16.

    Su, Z., Zeng, B., Miao, J., Luo, X., Yin, B., & Chen, Q. (2018). Relative reductive structure-aware regression filter. Journal of Computational and Applied Mathematics, 329, 244–255.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Gu, B., Li, W., Zhu, M., & Wang, M. (2013). Local edge-preserving multiscale disintegration for high dynamic range image tone mapping. IEEE Transactions on Image Processing, 22, 70–79.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Liu, W., Yang, X., Tao, D., Cheng, J., & Tang, Y. (2018). Multiview dimension reduction via Hessian multiset canonical correlations. Information Fusion, 41, 119–128.

    Article  Google Scholar 

  19. 19.

    Ok, J., & Lee, C. (2017). HDR tone mapping algorithm based on difference compression with adaptive reference values. Journal of Visual Communication and Image Representation, 43, 61–76.

    Article  Google Scholar 

  20. 20.

    Khan, I., Rahardja, S., Khan, M., Movania, M., & Abed, F. (2018). A tone-mapping technique based on histogram using a sensitivity model of the human visual system. IEEE Transactions on Industrial Electronics, 65, 3469–3479.

    Article  Google Scholar 

  21. 21.

    Kovács, G. (2017). Matching by monotonic tone mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1424–1436.

    Article  Google Scholar 

  22. 22.

    Kinoshita, Y., & Kiya, H. (2019). Deep inverse tone mapping using LDR based learning for estimating HDR images with absolute luminance. arXiv preprint arXiv:1903.01277.

  23. 23.

    Thai, B. C., Mokraoui, A., & Matei, B. (2019). Contrast enhancement and details preservation of tone mapped high dynamic range images. Journal of Visual Communication and Image Representation, 58, 589–599.

    Article  Google Scholar 

  24. 24.

    Hanhart, P., & Ebrahimi, T. (2017). Evaluation of JPEG XT for high dynamic range cameras. Signal Processing: Image Communication, 50, 9–20.

    Google Scholar 

  25. 25.

    El Mezeni, D., & Saranovac, L. (2018). Enhanced local tone mapping for detail preserving reproduction of high dynamic range images. Journal of Visual Communication and Image Representation, 53, 122–133.

    Article  Google Scholar 

  26. 26.

    Benzi, M., Escobar, M., & Kornprobst, P. (2018). A bio-inspired synergistic virtual retina model for tone mapping. Computer Vision and Image Understanding, 168, 21–36.

    Article  Google Scholar 

  27. 27.

    Jiang, Q., Shao, F., Lin, W., & Jiang, G. (2017). BLIQUE-TMI: Blind quality evaluator for tone-mapped images based on local and global feature analyses. IEEE Transactions on Circuits and Systems for Video Technology, 29(2), 323–335.

    Article  Google Scholar 

  28. 28.

    Artusi, A., Pouli, T., Banterle, F., & Oğuz Akyüz, A. (2018). Automatic saturation correction for dynamic range management algorithms. Signal Processing: Image Communication, 63, 100–112.

    Google Scholar 

  29. 29.

    Artusi, A., Mantiuk, R. K., Richter, T., Hanhart, P., Korshunov, P., Agostinelli, M., et al. (2019). Overview and evaluation of the JPEG XT HDR image compression standard. Journal of Real-Time Image Processing, 16(2), 413–428.

    Article  Google Scholar 

  30. 30.

    Li, Z., & Zheng, J. (2014). Visual-salience-based tone mapping for high dynamic range images. IEEE Transactions on Industrial Electronics, 61, 7076–7082.

    Article  Google Scholar 

  31. 31.

    Agaian, S., Silver, B., & Panetta, K. (2007). Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Transactions on Image Processing, 16, 741–758.

    MathSciNet  Article  Google Scholar 

  32. 32.

    Jose, A., & Heisterklaus, I. (2017). Bag of fisher vectors representation of images by saliency-based spatial partitioning. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), New Orleans, LA, USA (pp. 1762–1766).

  33. 33.

    Lau, C., Heidrich, W., & Mantiuk, R. (2011). Cluster-based color space optimizations. In 2011 International conference on computer vision, Barcelona, Spain (pp. 1172–1179).

  34. 34.

    Al-Mohair, H., Mohamad Saleh, J., & Suandi, S. (2015). Hybrid human skin detection using neural network and k-means clustering technique. Applied Soft Computing, 33, 337–347.

    Article  Google Scholar 

  35. 35.

    Wu, X., Zhu, X., Wu, G., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26, 97–107.

    Article  Google Scholar 

  36. 36.

    Lanjewar, R., Mathurkar, S., & Patel, N. (2015). Implementation and comparison of speech emotion recognition system using Gaussian mixture model (GMM) and k-nearest neighbor (K-NN) techniques. Procedia Computer Science, 49, 50–57.

    Article  Google Scholar 

  37. 37.

    Takashi, S., Masayuki, T., & Masatoshi, O. (2016). Gradient-domain image reconstruction framework with intensity-range and base-structure constraints. In IEEE conference on computer vision and pattern recognition, Las Vegas, Nevada, Available at:

  38. 38.

    Shan, Q., Jia, J., & Brown, M. (2010). Globally optimized linear windowed tone mapping. IEEE Transactions on Visualization and Computer Graphics, 16, 663–675.

    Article  Google Scholar 

  39. 39.

    Shibata, T., Tanaka, M., & Okutomi, M. (2016). Gradient-domain image reconstruction framework with intensity-range and base-structure constraints. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2745–2753).

  40. 40.

    Li, H., Jia, X., & Zhang, L. (2018). Clustering based content and color adaptive tone mapping. Computer Vision and Image Understanding, 168, 37–49.

    Article  Google Scholar 

  41. 41.

    Mantiuk, R., Daly, S., & Kerofsky, L. (2008). Display adaptive tone mapping. ACM Transactions on Graphics, 27, 68.

    Article  Google Scholar 

  42. 42.

    Neelima, N., & Kumar, Y. R. (2019). Optimal clustering based outlier detection and cluster center initialization algorithm for effective tone mapping. Multimedia Tools and Applications.

    Article  Google Scholar 

  43. 43.

    An, G., Lee, S., Ahn, Y., & Kang, S. (2018). 23-3: Deep tone-mapped HDRNET for high dynamic range image restoration. SID Symposium Digest of Technical Papers, 49, 291–294.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. Neelima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neelima, N., Kumar, Y.R. Tone Mapping High Dynamic Range Images by Hessian Multiset Canonical Correlations. Sens Imaging 21, 8 (2020).

Download citation


  • HesMCC
  • k-means clustering
  • Patch mean
  • Color variation
  • Color structure
  • High dynamic range image
  • Low dynamic range image
  • Tone mapping