Skip to main content
Log in

Shadow Image Based Reversible Data Hiding Using Addition and Subtraction Logic on the LSB Planes

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Image steganographic communication demands a fair trade-off among the three diametrically opposed metrics such as higher capacity, larger visual quality, and attack survival ability (ASA). Recently, some reversible data hiding (RDH) techniques using dual images have shown promising results to achieve the aforementioned needs. However, maintaining a balance among these metrics is still an open challenge. In this paper, using the concept of shadow image, which is basically the replica of the cover image (CI) and performing some simple addition and subtraction logic on the shadow image pixels, we propose an improved RDH technique that offers larger capacity, better stego-image (SI) quality and higher ASA. At first, during embedding, three shadow images of the CI are produced. Then, the shadow image pixels are adjusted based on their XOR features of the least significant bit planes. After embedding the secret bits, a maximum of ± 1 modification has been observed in the SI pixels. Later at the receiving end, the CI has been restored by applying the round function on the obtained SI pixels. Experimental results show that the proposed technique offers excellent visual quality with peak signal-to-noise ratio and structural similarity index (SSIM) of 52.47 dB, 53.91 dB, 52.48 dB and 0.9974, 0.9981, 0.9974 for the respective shadow images. Further, the proposed technique show exceptional anti-steganalysis ability to regular and singular analysis, pixel difference histogram analysis, and bit pair analysis. Additionally, the proposed technique successfully avoids the falling-off boundary problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hussain, M., Wahab, A. W. A., Idris, Y. I. B., Ho, A. T., & Jung, K. H. (2018). Image steganography in spatial domain: A survey. Signal Processing: Image Communication, 65, 46–66.

    Google Scholar 

  2. Kadhim, I. J., Premaratne, P., Vial, P. J., & Halloran, B. (2019). Comprehensive survey of image steganography: Techniques, evaluations, and trends in future research. Neurocomputing, 335, 299–326.

    Article  Google Scholar 

  3. Li, B., He, J., Huang, J., & Shi, Y. Q. (2011). A survey on image steganography and steganalysis. Journal of Information Hiding and Multimedia Signal Processing, 2(2), 142–172.

    Google Scholar 

  4. Amirtharajan, R., & Rayappan, J. B. B. (2013). Steganography-time to time: A review. Research Journal of Information Technology, 5(2), 53–66.

    Article  Google Scholar 

  5. Subhedar, M. S., & Mankar, V. H. (2014). Current status and key issues in image steganography: A survey. Computer Science Review, 13, 95–113.

    Article  MATH  Google Scholar 

  6. Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010). Digital image steganography: Survey and analysis of current methods. Signal Processing, 90(3), 727–752.

    Article  MATH  Google Scholar 

  7. Atawneh, S., Almomani, A., & Sumari, P. (2013). Steganography in digital images: Common approaches and tools. IETE Technical Review, 30(4), 344–358.

    Article  Google Scholar 

  8. Wu, N. I., & Hwang, M. S. (2017). A novel LSB data hiding scheme with the lowest distortion. The Imaging Science Journal, 65(6), 371–378.

    Article  Google Scholar 

  9. Wang, R. Z., Lin, C. F., & Lin, J. C. (2000). Hiding data in images by optimal moderately-significant-bit replacement. Electronics Letters, 36(25), 2069–2070.

    Article  MathSciNet  Google Scholar 

  10. Chang, C. C., Lin, M. H., & Hu, Y. C. (2002). A fast and secure image hiding scheme based on LSB substitution. International Journal of Pattern Recognition and Artificial Intelligence, 16(04), 399–416.

    Article  Google Scholar 

  11. Wang, R. Z., Lin, C. F., & Lin, J. C. (2001). Image hiding by optimal LSB substitution and genetic algorithm. Pattern recognition, 34(3), 671–683.

    Article  MATH  Google Scholar 

  12. Zakaria, A., Hussain, M., Wahab, A., Idris, M., Abdullah, N., & Jung, K. H. (2018). High-capacity image steganography with minimum modified bits based on data mapping and LSB substitution. Applied Sciences, 8(11), 2199.

    Article  Google Scholar 

  13. Yang, H., Sun, X., & Sun, G. (2009). A high-capacity image data hiding scheme using adaptive LSB substitution. Radioengineering, 18(4), 509–516.

    Google Scholar 

  14. Sharp, T. (2001). An implementation of key-based digital signal steganography. International workshop on information hiding (pp. 13–26). Berlin: Springer.

    Chapter  Google Scholar 

  15. Mielikainen, J. (2006). LSB matching revisited. IEEE Signal Processing Letters, 13(5), 285–287.

    Article  Google Scholar 

  16. Wu, D. C., & Tsai, W. H. (2003). A steganographic method for images by pixel-value differencing. Pattern Recognition Letters, 24(9–10), 1613–1626.

    Article  MATH  Google Scholar 

  17. Hameed, M. A., Aly, S., & Hassaballah, M. (2018). An efficient data hiding method based on adaptive directional pixel value differencing (ADPVD). Multimedia Tools and Applications, 77(12), 14705–14723.

    Article  Google Scholar 

  18. Prasad, S., & Pal, A. K. (2017). An RGB colour image steganography scheme using overlapping block-based pixel-value differencing. Royal Society Open Science, 4(4), 161066.

    Article  MathSciNet  Google Scholar 

  19. Jung, K. H., & Yoo, K. Y. (2015). High-capacity index based data hiding method. Multimedia Tools and Applications, 74(6), 2179–2193.

    Article  Google Scholar 

  20. Liu, H. H., Lin, Y. C., & Lee, C. M. (2019). A digital data hiding scheme based on pixel-value differencing and side match method. Multimedia Tools and Applications, 78(9), 12157–12181.

    Article  Google Scholar 

  21. Kim, P. H., Yoon, E. J., Ryu, K. W., & Jung, K. H. (2019). Data-hiding scheme using multidirectional pixel-value differencing on colour images. Security and Communication Networks. https://doi.org/10.1155/2019/9038650.

    Article  Google Scholar 

  22. Wu, H. C., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2005). Image steganographic scheme based on pixel-value differencing and LSB replacement methods. IEE Proceedings-Vision, Image and Signal Processing, 152(5), 611–615.

    Article  Google Scholar 

  23. Yang, C. H., Weng, C. Y., Wang, S. J., & Sun, H. M. (2010). Varied PVD+ LSB evading detection programs to spatial domain in data embedding systems. Journal of Systems and Software, 83(10), 1635–1643.

    Article  Google Scholar 

  24. Khodaei, M., & Faez, K. (2012). New adaptive steganographic method using least-significant-bit substitution and pixel-value differencing. IET Image processing, 6(6), 677–686.

    Article  Google Scholar 

  25. Shukla, A. K., Singh, A., Singh, B., & Kumar, A. (2018). A secure and high-capacity data-hiding method using compression, encryption and optimized pixel value differencing. IEEE Access, 6, 51130–51139.

    Article  Google Scholar 

  26. Jung, K. H. (2018). Data hiding scheme improving embedding capacity using mixed PVD and LSB on bit plane. Journal of Real-Time Image Processing, 14(1), 127–136.

    Article  Google Scholar 

  27. Kalita, M., Tuithung, T., & Majumder, S. (2019). An adaptive color image steganography method using adjacent pixel value differencing and LSB substitution technique. Cryptologia, 43, 1–24.

    Article  Google Scholar 

  28. Liao, X., Wen, Q. Y., & Zhang, J. (2011). A steganographic method for digital images with four-pixel differencing and modified LSB substitution. Journal of Visual Communication and Image Representation, 22(1), 1–8.

    Article  Google Scholar 

  29. Hameed, M. A., Hassaballah, M., Aly, S., & Awad, A. I. (2019). An adaptive image steganography method based on histogram of oriented gradient and PVD–LSB techniques. IEEE Access, 7, 185189–185204.

    Article  Google Scholar 

  30. Wang, C. M., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2008). A high quality steganographic method with pixel-value differencing and modulus function. Journal of Systems and Software, 81(1), 150–158.

    Article  Google Scholar 

  31. Joo, J. C., Lee, H. Y., & Lee, H. K. (2010). Improved steganographic method preserving pixel-value differencing histogram with modulus function. EURASIP Journal on Advances in Signal Processing, 2010(1), 249826.

    Article  Google Scholar 

  32. Maleki, N., Jalali, M., & Jahan, M. V. (2014). Adaptive and non-adaptive data hiding methods for grayscale images based on modulus function. Egyptian Informatics Journal, 15(2), 115–127.

    Article  Google Scholar 

  33. Sairam, T. D., & Boopathybagan, K. (2019). An improved high capacity data hiding scheme using pixel value adjustment and modulus operation. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-019-7557-9.

    Article  Google Scholar 

  34. Shen, S., Huang, L., & Tian, Q. (2015). A novel data hiding for color images based on pixel value difference and modulus function. Multimedia Tools and Applications, 74(3), 707–728.

    Article  Google Scholar 

  35. Sahu, A. K., & Swain, G. (2019). An optimal information hiding approach based on pixel value differencing and modulus function. Wireless Personal Communications, 108(1), 159–174.

    Article  Google Scholar 

  36. Liao, X., Wen, Q., & Zhang, J. (2013). Improving the adaptive steganographic methods based on modulus function. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 96(12), 2731–2734.

    Article  Google Scholar 

  37. Barton, J. M. (1997). Method and apparatus for embedding authentication information within digital data. U.S. Patent No. 5,646,997. Washington, DC: U.S. Patent and Trademark Office.

  38. Tian, J. (2003). Reversible data embedding using a difference expansion. IEEE transactions on Circuits and Systems for Video Technology, 13(8), 890–896.

    Article  Google Scholar 

  39. Alattar, A. M. (2004). Reversible watermark using the difference expansion of a generalized integer transform. IEEE Transactions on Image Processing, 13(8), 1147–1156.

    Article  MathSciNet  Google Scholar 

  40. Kim, H. J., Sachnev, V., Shi, Y. Q., Nam, J., & Choo, H. G. (2008). A novel difference expansion transform for reversible data embedding. IEEE Transactions on Information Forensics and Security, 3(3), 456–465.

    Article  Google Scholar 

  41. Ni, Z., Shi, Y. Q., Ansari, N., & Su, W. (2006). Reversible data hiding. IEEE Transactions on Circuits and Systems for Video Technology, 16(3), 354–362.

    Article  Google Scholar 

  42. Tsai, P., Hu, Y. C., & Yeh, H. L. (2009). Reversible image hiding scheme using predictive coding and histogram shifting. Signal Processing, 89(6), 1129–1143.

    Article  MATH  Google Scholar 

  43. Lu, T. C., Tseng, C. Y., & Wu, J. H. (2015). Dual imaging-based reversible hiding technique using LSB matching. Signal Processing, 108, 77–89.

    Article  Google Scholar 

  44. Lin, J. Y., Chen, Y., Chang, C. C., & Hu, Y. C. (2019). Dual-image-based reversible data hiding scheme with integrity verification using exploiting modification direction. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-019-07783-y.

    Article  Google Scholar 

  45. Wang, Y. L., Shen, J. J., & Hwang, M. S. (2017). An Improved Dual Image-based Reversible Hiding Technique Using LSB Matching. International Journal of Network Security, 19(5), 858–862.

    Google Scholar 

  46. Chang, C. C., Kieu, T. D., & Chou, Y. C. (2007). Reversible data hiding scheme using two steganographic images. In TENCON 2007–2007 IEEE Region 10 Conference (pp. 1–4).

  47. Sahu, A. K., & Swain, G. (2020). Reversible Image Steganography Using Dual-Layer LSB Matching. Sensing and Imaging, 21, 1. https://doi.org/10.1007/s11220-019-0262-y.

    Article  Google Scholar 

  48. Kurak, C., & McHugh, J. (1992). A cautionary note on image downgrading. In Proceedings 8th Annual Computer Security Application Conference (pp. 153–159).

  49. USC-SIPI Image Database. Retrieved 12 December, 2019 http://sipi.usc.edu/database/ database .php?volume=misc.

  50. Sahu, A. K., Swain, G., & Babu, E. S. (2018). Digital image steganography using bit fipping. Cybernetics and Information Technologies, 18(1), 69–80.

    Article  MathSciNet  Google Scholar 

  51. Liao, X., Yin, J., Chen, M., & Qin, Z. (2020). Adaptive payload distribution in multiple images steganography based on image texture features. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2020.3004708.

    Article  Google Scholar 

  52. Yang, J., & Liao, X. (2020). An embedding strategy on fusing multiple image features for data hiding in multiple images. Journal of Visual Communication and Image Representation, 71, 102822.

    Article  Google Scholar 

  53. Hassan, F. S., & Gutub, A. (2020). Efficient reversible data hiding multimedia technique based on smart image interpolation. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-020-09513-1.

    Article  Google Scholar 

  54. Liao, X., Yu, Y., Li, B., Li, Z., & Qin, Z. (2019). A new payload partition strategy in color image steganography. IEEE Transactions on Circuits and Systems for Video Technology, 30(3), 685–696.

    Article  Google Scholar 

  55. Hassan, F. S., & Gutub, A. (2020). Novel embedding secrecy within images utilizing an improved interpolation-based reversible data hiding scheme. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2020.07.

    Article  Google Scholar 

  56. Liao, X., Qin, Z., & Ding, L. (2017). Data embedding in digital images using critical functions. Signal Processing: Image Communication, 58, 146–156.

    Google Scholar 

  57. Fridrich, J., & Goljan, M. (2002). Practical steganalysis of digital images: State of the art. Security and Watermarking of Multimedia Contents IV, International Society for Optics and Photonics, 4675, 1–14.

    Google Scholar 

  58. Sahu, A. K., & Swain, G. (2019). Dual Stego-imaging based reversible data hiding using improved LSB matching. International Journal of Intelligent Engineering and Systems, 12(5), 63–73.

    Article  Google Scholar 

  59. Chen, Y. Q., Sun, W. J., Li, L. Y., Chang, C. C., & Wang, X. (2020). An efficient general data hiding scheme based on image interpolation. Journal of Information Security and Applications, 54, 102584.

    Article  Google Scholar 

Download references

Funding

We declare this work is an independent work and no financial have been received for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Sahu.

Ethics declarations

Conflict of interest

We declare we have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Padhy, N., Gantayat, S.S. et al. Shadow Image Based Reversible Data Hiding Using Addition and Subtraction Logic on the LSB Planes. Sens Imaging 22, 7 (2021). https://doi.org/10.1007/s11220-020-00328-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-020-00328-w

Keywords

Navigation