Skip to main content

Advertisement

Log in

CSM-Net: A Multi-Task Colorectal Cancer Analysis Framework

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Colorectal cancer is the second leading cause of cancer mortality before 2020, in this paper, we propose a simple yet efficient anchor-free instance segmentation framework, Colorectal Spatial Mask Network, aiming at jointly detecting and segmenting the tumor region in colorectal cancer MRI image series. we add a novel spatial attention-guided mask branch to anchor-free one stage object detector into the framework with the same way in Mask R-CNN. In addition, we also employ an improved network VoVNetV2 as the new backbone network. After comparison with the state-of-the-arts methods, the results of experiments reveal that our framework can get well balance between speed and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R . L., Torre, L . A., & Jemal, A. (2018). Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal For Clinicians, 68(6), 394–424.

    Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34.

    Google Scholar 

  3. Carli, F., Bousquet-Dion, G., Awasthi, R., Elsherbini, N., Liberman, S., Boutros, M., et al. (2020). Effect of multimodal prehabilitation vs postoperative rehabilitation on 30-day postoperative complications for frail patients undergoing resection of colorectal cancer: a randomized clinical trial. JAMA Surgery, 155(3), 233–242.

    Article  Google Scholar 

  4. Ochoa-Figueroa, M. A., Fernández-Mena, J., Zuluaga-Gómez, A., & Sánchez-Rodríguez, V. (2011). Papel actual del diagnóstico por imagen en la evaluación del paciente con cólico nefrítico. experiencia en un estudio bicéntrico con 145 pacientes. Anales de Radiologia, Mexico, 10(2), 112–120.

    Google Scholar 

  5. Lieberman, D. A. (2009). Screening for colorectal cancer. New England Journal of Medicine, 361(12), 1179–1187.

    Article  Google Scholar 

  6. Bibbins-Domingo, K., Grossman, D. C., Curry, S. J., Davidson, K. W., Epling, J. W., García, F. A., et al. (2016). Screening for colorectal cancer: Us preventive services task force recommendation statement. Jama, 315(23), 2564–2575.

    Article  Google Scholar 

  7. Sivesgaard, K., Larsen, L. P., Sørensen, M., Kramer, S., Schlander, S., Amanavicius, N., et al. (2020). Whole-body mri added to gadoxetic acid-enhanced liver mri for detection of extrahepatic disease in patients considered eligible for hepatic resection and/or local ablation of colorectal cancer liver metastases. Acta Radiologica, 61(2), 156–167.

    Article  Google Scholar 

  8. Jensch, S., Bipat, S., Peringa, J., de Vries, A. H., Heutinck, A., Dekker, E., et al. (2010). Ct colonography with limited bowel preparation: Prospective assessment of patient experience and preference in comparison to optical colonoscopy with cathartic bowel preparation. European Radiology, 20(1), 146–156.

    Article  Google Scholar 

  9. Wilson, S., & Thompson, J. (2020). Comparison of two meglumine-diatrizoate based bowel preparations for computed tomography colonography: Comparison of patient symptoms and bowel preparation quality. Radiography. https://doi.org/10.1016/j.radi.2020.04.007.

    Article  Google Scholar 

  10. Schick, U., Lucia, F., Dissaux, G., Visvikis, D., Badic, B., Masson, I., et al. (2019). Mri-derived radiomics: Methodology and clinical applications in the field of pelvic oncology. The British Journal of Radiology, 92(1104), 20190105.

    Article  Google Scholar 

  11. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., & Voorhees, E.M.: “Overview of the trec 2019 deep learning track,” arXiv preprint arXiv:2003.07820, 2020.

  12. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  13. Haskins, G., Kruger, U., & Yan, P. (2020). Deep learning in medical image registration: A survey. Machine Vision and Applications, 31(1), 8.

    Article  Google Scholar 

  14. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.

    Article  Google Scholar 

  15. Lakhani, P. (2020). The importance of image resolution in building deep learning models for medical imaging. Radiology: Artificial Intelligence, 2(1), e190177.

    Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017).Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, (pp. 2961–2969).

  17. Tian, Z., Shen, C., Chen, H.. & He, T. (2019). Fcos: Fully convolutional one-stage object detection. In:Proceedings of the IEEE International Conference on Computer Vision, (pp. 9627–9636).

  18. Zhao, Z.-Q., Zheng, P., Xu, S.-T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212–3232.

    Article  Google Scholar 

  19. Bolya, D., Zhou, C., Xiao, F., & Lee, Y. J. (2019). Yolact: Real-time instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (pp. 9157–9166).

  20. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (pp. 91–99).

  21. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft coco: Common objects in context. In: European Conference on Computer Vision (pp. 740–755). Berlin: Springer.

    Google Scholar 

  22. Cai, Z., Vasconcelos, N. (2018) Cascade r-cnn: Delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6154–6162).

  23. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., & Ouyang, W. et al. (2019). Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4974–4983).

  24. Huang, Z., Huang, L., Gong, Y., Huang, C., & Wang, X. (2019). Mask scoring r-cnn. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6409–6418).

  25. Li, Y., Chen, Y., Wang, N., & Zhang, Z. (2019) Scale-aware trident networks for object detection. In: Proceedings of the IEEE International Conference on Computer Vision (pp. 6054–6063).

  26. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J. (2018) Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8759–8768).

  27. Law, H., & Deng, J. (2018) Cornernet: Detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV) (pp. 734–750).

  28. Zhou, X., Zhuo, J., & Krahenbuhl, P. (2019) Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 850–859).

  29. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019) Centernet: Keypoint triplets for object detection. In: Proceedings of the IEEE International Conference on Computer Vision (pp. 6569–6578).

  30. Roth, H.R., Lu, L., Farag, A., Sohn, A., & Summers, R. M. (2016) Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention (pp. 451–459). Springer, Berlin.

  31. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al. (2017). Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, 18–31.

    Article  Google Scholar 

  32. Chen, H., Dou, Q., Yu, L., Qin, J., & Heng, P.-A. (2018). Voxresnet: Deep voxelwise residual networks for brain segmentation from 3d mr images. NeuroImage, 170, 446–455.

    Article  Google Scholar 

  33. Yu, L., Cheng, J.-Z., Dou, Q., Yang, X., Chen, H., Qin, J., & Heng, P.-A. (2017) Automatic 3d cardiovascular mr segmentation with densely-connected volumetric convnets. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 287–295). Springer, Berlin.

  34. Trebeschi, S., van Griethuysen, J. J., Lambregts, D. M., Lahaye, M. J., Parmar, C., Bakers, F. C., et al. (2017). Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric mr. Scientific Reports, 7(1), 1–9.

    Article  Google Scholar 

  35. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017) Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4700–4708).

  36. Bui, T. D., Shin, J., & Moon, T. (2017) “3d densely convolutional networks for volumetric segmentation,” arXiv preprint arXiv:1709.03199.

  37. Lee, Y., Hwang, J.-w., Lee, S., Bae, Y., & Park, J. (2019). An energy and gpu-computation efficient backbone network for real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.

  38. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2117–2125).

  39. Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7132–7141).

  40. Qin, Z., Li, Z., Zhang, Z., Bao, Y., Yu, G., Peng, Y., & Sun, J. (2019). Thundernet: Towards real-time generic object detection on mobile devices. In: Proceedings of the IEEE International Conference on Computer Vision (pp. 6718–6727).

  41. Woo, S., Park, J., Lee, J.-Y., & So Kweon, I. (2018). Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3–19).

  42. Zhu, X., Cheng, D., Zhang, Z., Lin, S., & Dai, J. (2019). An empirical study of spatial attention mechanisms in deep networks. In: Proceedings of the IEEE International Conference on Computer Vision (pp. 6688–6697).

  43. Lee. Y., Park, J. (2019). Centermask: Real-time anchor-free instance segmentation. arXiv preprint arXiv:1911.06667.

  44. He, F., Liu, T., & Tao, D. (2020). Why resnet works? residuals generalize. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.2966319.

    Article  Google Scholar 

  45. Chen, X., Girshick, R., He, K., & Dollár, P. (2019). Tensormask: A foundation for dense object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (pp. 2061–2069).

  46. He, K., Girshick, R., & Dollár, P. (2019).Rethinking imagenet pre-training. In: Proceedings of the IEEE International Conference on Computer Vision (pp. 4918–4927)

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 61702026), The Pyramid Talent Training Project of BUCEA (Grant No. JDYC20200318), Harbin Applied Technology Research and Development Program under Grant 2017RAQXJ096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhe Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, D., Zhang, Y., Li, Z. et al. CSM-Net: A Multi-Task Colorectal Cancer Analysis Framework. Sens Imaging 21, 42 (2020). https://doi.org/10.1007/s11220-020-00307-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-020-00307-1

Keywords

Navigation