Skip to main content
Log in

Inexpensive Hetero-core Spliced Fiber Optic Setup for Assessing Strain

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

We report here a novel experimental scheme for the measurement of strain that utilizes a simple intensity based interrogation system through use of optical fibers. Corresponding to splicing of a multimode fiber between two single mode fibers, the transmittance was measured by subjecting them to strain at multi points. The measurements corresponding to those multi points are found to mimic multimode interference, considerably. The set-up has the potential to be applied in crack propagation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antonio Lopez, E., Castillo-Guzman, A., May-Arrioja, D. A., Selvas-Aguilar, R., & Likam Wa, P. (2010). Tunable multimode-interference band pass fiber filter. Optics Letters, 35, 324–326.

    Article  Google Scholar 

  2. Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13, 615–627.

    Article  Google Scholar 

  3. Rahman, B. M. A., Somasiri, N., Themistos, C., & Grattan, K. T. V. (2001). Design of optical polarization splitters in a single-section deeply etched MMI waveguide. Applied Physics B, 73, 613–618.

    Article  Google Scholar 

  4. Sasaki, H., Kubota, Y., & Watanabe, K. (2004). Combined fiber optic network for communication and measurement using a hetero-core spliced fiber optic sensor. In Proceedings of the SPIE 5579, photonics north 136.

  5. Shamir, Y., Sintov, Y., & Shtaif, M. (2011). Large-mode-area fused-fiber combiners, with nearly lowest-mode brightness conservation. Optics Letters, 36(15), 2874–2876.

    Article  Google Scholar 

  6. Wang, Q., & Farrell, G. (2006). All-fiber multimode-interference based refractometer sensor: Proposal and design. Optics Letters, 31(3), 317–319.

    Article  Google Scholar 

  7. Wang, Q., & Farrell, G. (2006). Multimode fiber based edge filter for optical wavelength measurement application. Microwave and Optical Technology Letters, 48(5), 900–902.

    Article  Google Scholar 

  8. Wang, J. N., & Tang, J. L. (2010). Feasibility of fiber Bragg grating and long-period fiber grating sensors under different environmental conditions. Sensors, 10, 10105–10127.

    Article  Google Scholar 

  9. Watanabe, K., Tajima, K., & Kubota, Y. (2000). Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection. IEICE Transactions on Electronics, 83(3), 309–314.

    Google Scholar 

  10. Wu, Q., Semenova, Y., Wang, P., & Farrell, G. (2011). High Sensitivity SMS fiber structure based refractometer analysis and experiment. Optics Express, 19(9), 7937–7944.

    Article  Google Scholar 

  11. Yataki, M. S., Payne, D. N., & Varnham, M. P. (1985). All-fiber polarizing beam splitter. Electronics Letters, 21(6), 742–743.

    Google Scholar 

  12. Zhou, Z., Graver, T. W., Hsu, L., & Ou, J. (2003). Techniques of advanced FBG sensors: Fabrication, demodulation, encapsulation and the structural health monitoring of bridges. Pacific Science Review, 5, 116–121.

    Google Scholar 

  13. Biswas, R., & Nath, P. (2014). Sensitivity analysis of two fiber optic sensors. Indian Journal of Physics, 88(10), 1105–1110.

    Article  Google Scholar 

  14. Biswas, R., & Karmakar, P. (2016). All fiber optic hetero-core spliced multimode single mode multimode filter. Optical and Quantum Electronics, 48, 385.

    Article  Google Scholar 

  15. Biswas, R. (2017). Low cost wavelength selective evanescent fiber optic temperature and refractive index sensor. European Physical Journal Plus, 132, 207.

    Article  Google Scholar 

  16. Biswas, R., Karmakar, P. K., Gogoi, C., & Sarma, D. (2017). A comparative analysis of hetero core spliced MSM and SMS system in terms of transmittance. International Journal of Photonics and Optical Technology, 3(9), 16–19.

    Google Scholar 

  17. Du, W., Tao, X., & Tam, H. (1999). Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technology Letters, 11(1), 105–107.

    Article  Google Scholar 

  18. Geuzebroek, D., Dekker, R., Klein, E., & Kerkhof, J. (2016). Photonic integrated circuits for visible light and near infrared: Controlling transport and properties of light. Sensors and Actuators B: Chemical, 223, 952–956.

    Article  Google Scholar 

  19. Goh, L. S., Ichimiya, T., Watanabe, K., & Shinomiya, N. (2012). A hetero-core spliced optical fiber sensor network for remote monitoring of agricultural environment. In Proceedings of the 26th international conference on advanced information networking and application workshops (pp. 418–422).

  20. Hill, K. O., & Meltz, G. (1997). Fiber Brag grating: technology fundamentals and overview. Journal of Lightwave Technology, 15(8), 1263–1276.

    Article  Google Scholar 

  21. Mehta, A., Mohammed, W. S., & Johnson, E. G. (2003). Multimode interference-based fiber optic displacement sensor. Photonics Technology Letters, 15, 1129–1131.

    Article  Google Scholar 

  22. Mohammed, W. S., Mehta, A., & Johnson, E. G. (2004). Wavelength tunable fiber lens based on multimode interference. Journal of Lightwave Technology, 22, 469–477.

    Article  Google Scholar 

  23. Mohammed, W. S., Smith, P. W. E., & Gu, X. (2006). All-fiber multimode interference bandpass filter. Optics Letters, 31(17), 2547–2549.

    Article  Google Scholar 

  24. Mork, J., & Nielson, T. R. (2010). On the use of slow light for enhancing waveguide properties. Optics Letters, 35, 2834–2836.

    Article  Google Scholar 

  25. Biswas, R. (2019). Hetero core arrangement of optical fibers as an effective tool for different sensing applications. COJ Electronics & Communications. https://doi.org/10.31031/cojec.2019.01.000523.

    Article  Google Scholar 

  26. Nath, P., Neog, S. K., Biswas, R., & Choudhury, A. J. (2013). All fiber optic pressure sensor with ON–OFF state. IEEE-Sensor, 13(4), 1148–1152.

    Article  Google Scholar 

  27. Paiam, M. R., & MacDonald, R. I. (1997). Design of phased-array wavelength division multiplexers using multimode interference couplers. Applied Optics, 36(21), 5097–5108.

    Article  Google Scholar 

  28. Mizuno, Y., Hagiwara, S., Lee, H., Hayashi, N., Nishiyama, M., Wanatabe, K., et al. (2020). Strain and temperature dependencies of multimodal interference spectra in hetero-core-fiber structures. Japanese Journal of Applied Physics, 59, 058002.

    Article  Google Scholar 

  29. Nishiyama, M., Sasaki, H., & Watanabe, K. (2005). Real-time distortion measurement in a slab structure using hetero-core fiber optic embedded sensors. In Proceedings of SPIE 5855, 17th international conference on optical fibre sensors. https://doi.org/10.1117/12.624214.

  30. Jeong, Y. (2000). A self-referencing fiber-optic sensor for macro-bending detection immune to temperature and strain perturbations. In Proceedings of SPIE 4185, fourteenth international conference on optical fiber sensors, 41853E. https://doi.org/10.1117/12.2302265.

  31. Huang, J., Lan, X., Wang, H., Yuan, L., Wei, T., Gao, Z., et al. (2012). Polymer optical fiber for large strain measurement based on multimode interference. Optics Letters, 37(20), 4308–4310. https://doi.org/10.1364/OL.37.004308.

    Article  Google Scholar 

  32. Dey, K., Pavan, V. D. R., Roy, S., Shankar, S., & Ramesh, B. (2020). Interrogation of SMS for measuring of temperature and strain using half-etched FBG with enhanced sensitivity. In Proceedings of SPIE 11355, micro-structured and specialty optical fibres VI, 113550Z. https://doi.org/10.1117/12.2555327.

  33. Liu, Z., Li, Y., Liu, Y., Tan, Z. W., & Jian, S. (2013). A static axial strain fiber ring cavity laser sensor based on multi-modal interference. IEEE Photonics Technology Letters, 25(21), 2050–2053.

    Article  Google Scholar 

  34. Lil, B., Liul, D., Semenoval, Y., Farrelll, G., Chan, H., & Wui, Q. (2015). Investigation on stress/strain sensing characteristics for magnetorheological smart composite material by a SMS fiber structure. In TENCON 2015—2015 IEEE region 10 conference.

  35. Tripathi, S. M., Kumar, A., Varshney, R. K., Kumar, Y. B. P., Marin, E., & Meunier, J.-P. (2009). Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures. Journal of Lightwave Technology, 27(13), 2348–2356.

    Article  Google Scholar 

  36. Sun, Y., Liu, D., Lu, P., Sun, Q., Yang, W., Wang, S., et al. (2017). High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure. Optics Communications, 405, 416–420.

    Article  Google Scholar 

  37. Hatta, A. M., Permana, H. E., Setijono, H., & Kusumawardhani, A. (2013). Strain measurement based on SMS fiber structure sensor and OTDR. Microwave and Optical Technology Letters, 55(11), 2576–2578.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R. Inexpensive Hetero-core Spliced Fiber Optic Setup for Assessing Strain. Sens Imaging 21, 38 (2020). https://doi.org/10.1007/s11220-020-00298-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-020-00298-z

Keywords

Navigation