Skip to main content

Advertisement

Log in

Discriminative Analysis of Depression Patients Studied with Structural MR Images Using Support Vector Machine and Recursive Feature Elimination

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Currently, the diagnosis of depression is largely based on clinical judgments due to the absence of objective biomarkers. There are increasing evidences that depression (DP) is associated with structural abnormalities. However, the previous analyses have a poor predictive power for individuals. To discriminate DP patients from normal controls (NCs) studied with structural magnetic resonance images using the method of support vector machine (SVM) combined with recursive feature elimination (RFE). In this study, 40 DP patients and 40 age- and sex-matched NCs were recruited from Guangzhou Brain Hospital and the local community, respectively. We calculated gray matter volume (GMV) and white matter volume (WMV) of 210 cortical and 36 subcortical regions, defined by the Human Brainnetome Atlas. The group differences between DP patients and NCs were compared. The method of SVM combined with RFE was applied into the discriminative analysis of DP patients from NCs, in which discriminative features were drawn from GMV and WMV. We found that the DP patients showed significant GMV reductions in eight brain regions and showed significant WMV reductions in ten brain regions. The classifier using GMV as input features achieved the best performance (an accuracy of 86.25%, a sensitivity of 85%, and a specificity of 87.5%) in the discriminative analyses between DP patients and NCs. These findings provided evidences that specific structural brain regions associated with DP patients might qualify as a potential biomarker for disease diagnosis, and the machine-learning method of SVM with RFE may reveal neurobiological mechanisms in distinguishing DP patients from NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gong, Q., & He, Y. (2015). Depression, neuroimaging and connectomics: A selective overview. Biological Psychiatry, 77(3), 223–235.

    Article  Google Scholar 

  2. Pannekoek, J. N., van der Werff, S. J. A., van den Bulk, B. G., et al. (2014). Reduced anterior cingulate gray matter volume in treatment-naive clinically depressed adolescents. NeuroImage: Clinical, 4, 336–342.

    Article  Google Scholar 

  3. Grieve, S. M., Korgaonkar, M. S., Koslow, S. H., et al. (2013). Widespread reductions in gray matter volume in depression. NeuroImage: Clinical, 3, 332–339.

    Article  Google Scholar 

  4. Zhang, H., Li, L., Wu, M., et al. (2016). Brain gray matter alterations in first episodes of depression: A meta-analysis of whole-brain studies. Neuroscience and Biobehavioral Reviews, 60, 43–50.

    Article  Google Scholar 

  5. Shen, Z., Cheng, Y., Yang, S., et al. (2016). Changes of grey matter volume in first-episode drug-naive adult major depressive disorder patients with different age-onset. NeuroImage: Clinical, 12, 492–498.

    Article  Google Scholar 

  6. Zhang, X., Yao, S., Zhu, X., et al. (2012). Gray matter volume abnormalities in individuals with cognitive vulnerability to depression: A voxel-based morphometry study. Journal of Affective Disorders, 136(3), 443–452.

    Article  Google Scholar 

  7. Yang, S., Cheng, Y., Mo, Y., et al. (2017). Childhood maltreatment is associated with gray matter volume abnormalities in patients with first-episode depression. Psychiatry Research: Neuroimaging, 268, 27–34.

    Article  Google Scholar 

  8. Bracht, T., Linden, D., & Keedwell, P. (2015). A review of white matter microstructure alterations of pathways of the reward circuit in depression. Journal of Affective Disorders, 187, 45–53.

    Article  Google Scholar 

  9. Guo, W., Liu, F., Xun, G., et al. (2014). Disrupted white matter integrity in first-episode, drug-naive, late-onset depression. Journal of Affective Disorders, 163, 70–75.

    Article  Google Scholar 

  10. Yang, X., Wang, Y., Wang, D., et al. (2017). White matter microstructural abnormalities and their association with anticipatory anhedonia in depression. Psychiatry Research: Neuroimaging, 264, 29–34.

    Article  Google Scholar 

  11. Jie, N., Zhu, M., Ma, X., et al. (2015). Discriminating bipolar disorder from major depression based on SVM-FoBa: Efficient feature selection with multimodal brain imaging data. IEEE Transactions on Autonomous Mental Development, 7(4), 320–331.

    Article  Google Scholar 

  12. Dai, Z., Yan, C., Wang, Z., et al. (2012). Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage, 59(3), 2187–2195.

    Article  Google Scholar 

  13. Arbabshirani, M. R., Castro, E., & Calhoun, V, D. (2014). Accurate classification of schizophrenia patients based on novel resting-state fMRI features. In IEEE engineering in medicine and biology society conference proceedings (pp. 6691–6694).

  14. Wu, F., Zhang, Y., & Yang, Y., et al. (2018). Structural and functional brain abnormalities in drug-naive, first-episode, and chronic patients with schizophrenia: a multimodal MRI study. Neuropsychiatric Disease and Treatment.

  15. Cherkassky, V. (1997). The nature of statistical learning theory. IEEE Transactions on Neural Networks, 8(6), 1564.

    Article  Google Scholar 

  16. Rubin-Falcone, H., Zanderigo, F., Thapa-Chhetry, B., et al. (2018). Pattern recognition of magnetic resonance imaging-based gray matter volume measurements classifies bipolar disorder and major depressive disorder. Journal of Affective Disorders, 227, 498–505.

    Article  Google Scholar 

  17. Xiao, Y., Yan, Z., & Zhao, Y, et al. (2017). Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI. Schizophrenia Research.

  18. Chu, C., Hsu, A., Chou, K., et al. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1), 59–70.

    Article  Google Scholar 

  19. Guyon, I., & Weston, J. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.

    Article  Google Scholar 

  20. Ding, X., Yang, Y., Stein, E. A., et al. (2015). Multivariate classification of smokers and nonsmokers using SVM-RFE on structural MRI images. Human Brain Mapping, 36(12), 4869–4879.

    Article  Google Scholar 

  21. Bech, P., Allerup, P., Gram, L. F., et al. (1981). The Hamilton depression scale. Evaluation of objectivity using logistic models. Acta Psychiatrica Scandinavica, 63(3), 290–299.

    Article  Google Scholar 

  22. Bobo, W. V., Anglero, G. C., Jenkins, G., et al. (2016). Validation of the 17-item Hamilton depression rating scale definition of response for adults with major depressive disorder using equipercentile linking to clinical global impression scale ratings: Analysis of pharmacogenomic research network antidepressant medication pharmacogenomic study (PGRN-AMPS) data. Human Psychopharmacology, 31(3), 185–192.

    Article  Google Scholar 

  23. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

    Article  Google Scholar 

  24. Good, C. D., Johnsrude, I., Ashburner, J., et al. (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage, 14(3), 685–700.

    Article  Google Scholar 

  25. Fan, L., Li, H., Zhuo, J., et al. (2016). The human brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 3508–3526.

    Article  Google Scholar 

  26. Cortes, C. V. V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

    MATH  Google Scholar 

  27. Chang, C., & Lin, C. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27.

    Article  Google Scholar 

  28. Kearns, M., & Ron, D. (1999). Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Computation, 11(6), 1427–1453.

    Article  Google Scholar 

  29. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

    Article  Google Scholar 

  30. Chi, M., Guo, S., Ning, Y., et al. (2014). Using support vector machine to identify imaging biomarkers of major depressive disorder and anxious depression (Vol. 472, pp. 63–67). Wuhan: Springer.

    Google Scholar 

  31. Hilbert, K., Lueken, U., Muehlhan, M., et al. (2017). Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: A multimodal machine learning study. Brain and Behavior, 7(3), e00633.

    Article  Google Scholar 

  32. Ramasubbu, R., Brown, M. R. G., Cortese, F., et al. (2016). Accuracy of automated classification of major depressive disorder as a function of symptom severity. Neuroimage-Clinical, 12, 320–331.

    Article  Google Scholar 

  33. Lu, X., Yang, Y., Wu, F., et al. (2016). Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine, 95(30), e3973.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC; 31400845, 31771074), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAI13B01, 2015BAI13B02), the Guangdong Natural Science Foundation (2015A030313800), the Science and Technology Program of Guangdong (2016B010108003, 2016A020216004), the Science and Technology Program of Guangzhou (201604020170, 2017010160496, 201704020168, 201807010064), the Guangzhou Medical and Health Science and Technology Project (20171A011268, 20171A010283), and the Youth Innovation Talent Project of Guangdong Education Department (2017KQNCX259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Recent Developments in Sensing and Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Peng, H., Zhang, Y. et al. Discriminative Analysis of Depression Patients Studied with Structural MR Images Using Support Vector Machine and Recursive Feature Elimination. Sens Imaging 20, 21 (2019). https://doi.org/10.1007/s11220-019-0242-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-019-0242-2

Keywords

Navigation