Sensing and Imaging

, 20:26 | Cite as

An Automatic Stopping Criterion for Contrast Enhancement Using Multi-scale Top-Hat Transformation

  • Cesar Bustacara-MedinaEmail author
  • Leonardo Flórez-Valencia
Original Paper


Image contrast enhancement is frequently referred to as one of the most important issues in image processing because it is a necessary pre-processing step in many computer vision and image processing algorithms. Contrast enhancement is normally required to increase the quality of low contrast images by expanding the dynamic range of input gray level. However, image contrast enhancement without disturbing other parameters of the image is one of the difficult tasks in image processing. To efficiently enhance images, algorithms based on multi-scale top-hat morphological transform (MSTH) have been proposed. However, scale selection to stop the algorithm is very subjective and empirical. In order to automatically select the iterations number required by MSTH algorithm, an automatic stopping criterion based on the contrast improvement ratio revisited is proposed in this paper.


Contrast enhancement Stopping criteria Morphological transforms Multi-scale top-hat 



  1. 1.
    Bai, X., & Zhou, F. (2010). Multi Scale Top-hat Transform Based Algorithm for Image Enhancement. In ICSP2010 Proceedings, pp. 797–800.Google Scholar
  2. 2.
    Bai, X., Li, Y., & Zhou, F. (2012). Measure of image clarity using image features extracted by the multiscale top-hat transform. Journal of Optics, 14(4), 045402.CrossRefGoogle Scholar
  3. 3.
    Bai, X., & Zhou, F. (2013). A unified form of multi-scale top-hat transform based algorithms for image processing. Optik (Stuttg), 124(13), 1614–1619.CrossRefGoogle Scholar
  4. 4.
    Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI–8(6), 679–698.CrossRefGoogle Scholar
  5. 5.
    Firoz, R., Ali, M. Shahjahan, Khan, M. Nasir Uddin, Hossain, M. Khalid, Islam, M. Khairul, & Shahinuzzaman, M. (2016). Medical image enhancement using morphological transformation. Journal of Data Analysis and Information Processing, 4(4), 1–12.CrossRefGoogle Scholar
  6. 6.
    Hassanpour, H., Samadiani, N., & Salehi, S. M. Mahdi. (2015). Using morphological transforms to enhance the contrast of medical images. The Egyptian Journal of Radiology and Nuclear Medicine, 46(2), 481–489.CrossRefGoogle Scholar
  7. 7.
    Jagannath, H. S., Virmani, J., & Kumar, V. (2012). Morphological enhancement of microcalcifications in digital mammograms. Journal of The Institution of Engineers (India): Series B, 93(3), 163–172.CrossRefGoogle Scholar
  8. 8.
    João, A., Gambaruto, A. M., Tiago, J., & Sequeira, A. (2016). Computational advances applied to medical image processing: an update. Open Access Bioinformatics, 8, 1–15.Google Scholar
  9. 9.
    Kamra, A., Jain, V. K., & Pragya, (2015). Contrast enhancement of masses in mammograms using multiscale morphology. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 9(7), 546–549.Google Scholar
  10. 10.
    Kimori, Y. (2013). Morphological image processing for quantitative shape analysis of biomedical structures: Effective contrast enhancement. Journal of Synchrotron Radiation, 20(6), 848–853.CrossRefGoogle Scholar
  11. 11.
    Le, T. K. (2013). Segmentation of lung vessels together with nodules in CT images using morphological operations and level set. Journal of Medical and Bioengineering, 2(1), 5–10.CrossRefGoogle Scholar
  12. 12.
    Maragatham, G., & Roomi, M. (2015). A Review of Image Contrast Enhancement Methods and Techniques. Research Journal of Applied Sciences, Engineering and Technology, 9(5), 309–326.CrossRefGoogle Scholar
  13. 13.
    Maragos, P. (2005). Morphological Filtering for image enhancement and feature detection. In The image and video processing handbook (2nd ed.), 2nd ed., A. C. Bovik, Ed. Elsevier Academic Press, pp. 135–156.CrossRefGoogle Scholar
  14. 14.
    Mukhopadhyay, S., & Chanda, B. (2000). Local contrast enhancement of grayscale images using multiscale morphology. In ICVGIP, pp. 1–8.Google Scholar
  15. 15.
    Pesaresi, M., & Benediktsson, J. A. (2001). A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(2), 309–320.CrossRefGoogle Scholar
  16. 16.
    Renieblas, G. Prieto, Nogués, A. Turrero, González, A. Muñoz, Gómez-Leon, N., & del Castillo, E. Guibelalde. (2017). Structural similarity index family for image quality assessment in radiological images. Journal of Medical Imaging, 4(3), 1–11.CrossRefGoogle Scholar
  17. 17.
    Ritika, (2012). A novel approach for local contrast enhancement of medical images using mathematical morphology. International Journal of Computer Science, Information Technology, and Security, 2(2), 392–397.Google Scholar
  18. 18.
    Serra, J. P. (1982). Image analysis and mathematical morphology (2nd ed., Vol. 1). New York: Academic Press.zbMATHGoogle Scholar
  19. 19.
    Serra, J. P., & Soille, P. (1994). Mathematical morphology and its applications to image processing (Vol. 2). Berlin: Springer Science and Business Media.CrossRefGoogle Scholar
  20. 20.
    Serra, J. P. (2006). A lattice approach to image segmentation. Journal of Mathematical Imaging and Vision, 24(1), 83–130.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(379–423), 623–656.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Soille, P. (2004). Morphological image analysis: Principles and applications, Second. Berlin: Springer.CrossRefGoogle Scholar
  23. 23.
    Wang, Y.-P., Wu, Q., Castleman, K. R., & Xiong, Z. (2003). Chromosome image enhancement using multiscale differential operators. IEEE Transactions on Medical Imaging, 22(5), 685–693.CrossRefGoogle Scholar
  24. 24.
    Zadorozny, A., & Zhang, H. (2009). Contrast enhancement using morphological scale space. In IEEE international conference on automation and logistics, pp. 804–807.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cesar Bustacara-Medina
    • 1
    Email author
  • Leonardo Flórez-Valencia
    • 1
  1. 1.Department of Systems EngineeringPontificia Universidad JaverianaBogotá D.C.Colombia

Personalised recommendations