Skip to main content
Log in

Lock-in Amplifier Based Eddy Current Instrument for Detection of Sub-surface Defect in Stainless Steel Plates

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

For detection of sub-surface defects using eddy current (EC) method, increasing the depth of penetration of ECs is essential. This can be achieved through strengthening of the primary magnetic field from the EC probe. This can be accomplished by using low-frequency high amplitude excitation current, precise phase lag measurement and high throughput probes. Working on these lines, the paper presents development of lock-in amplifier based EC instrument and cup-core send-receive type probe. Experiment results indicate that the proposed instrument and probe is able to detect sub-surface defects located at 8.0 mm below surface and classify sub-surface as well as surface defects in stainless steel plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Libby, H. L. (1971). Introduction to electromagnetic non-destructive test methods. Hoboken: Wiley.

    Google Scholar 

  2. Javier, G. M., Jaime, G.-G., & Ernesto, V.-S. (2011). Non-destructive techniques based on Eddy current testing. Sensors, 11, 2525–2565.

    Article  Google Scholar 

  3. Atzlesberger, J., Zagar, B. G., Cihal, R., Brummayer, M., & Reisinger, P. (2013). Sub-surface defect detection in a steel sheet. Measurement Science and Technology, 24, 084003.

    Article  Google Scholar 

  4. Joubert, P. Y., Vourc’h, E., Tassin, A., & Diraison, Y. L. (2010). Source separation techniques applied to the detection of subsurface defects in the eddy current NDT of aeronautical lap-joints. NDT&E International, 43, 606–614.

    Article  Google Scholar 

  5. Rao, B. P. C. (2007). Practical Eddy current testing (pp. 49–53). New Delhi: Narosa Publishing House Pvt. Ltd.

    Google Scholar 

  6. Dario, P., Rocha, T. J., Ramos, H. G., & Ribeiro, A. L. (2012). Evaluation of portable ECT instruments with positioning capability. Measurement, 45, 393–404.

    Article  Google Scholar 

  7. Yating, Y., Yang, T., & Pingan, D. (2012). A new Eddy current displacement measuring instrument independent of sample electromagnetic properties. NDT&E International, 48, 16–22.

    Article  Google Scholar 

  8. Chady, T., Psuj, G., Sikora, R., Kowalczyk, J., & Spychalski, I. (2014). Eddy current system for inspection of train hollow axles. AIP Conference Proceedings, 1581(1), 1387–1392.

    Article  Google Scholar 

  9. Palanisamy, P., & Lakin, K. M. (1983). Development of EC inspection technique for sleeved engine disk, bolt holes. Review of Progress in Quantitative Non-destructive Evaluation, 2A, 205–223.

    Article  Google Scholar 

  10. Vernon, S. N., & Gross, T. A. O. (1987). Effect of shielding on properties of eddy current probe with ferrite cup-core. Review of Progress in Quantitative Non-destructive Evaluation, 6A, 713–719.

    Article  Google Scholar 

  11. Vourc’h, E., Joubert, P. Y., Le Gac, G., & Larzabal, P. (2013). Non-destructive evaluation of loose assemblies using multi-frequency Eddy currents and artificial neural networks. Measurement Science and Technology, 24, 125604.

    Article  Google Scholar 

  12. Udpa, S. S., & Moore, P. O. (2004). Non-destructive testing handbook third edition volume 5 electromagnetic testing (pp. 132–151). Ohio: American Society of Nondestructive Testing.

    Google Scholar 

  13. Ribeiro, A. L. & Ramos, H. G. (2008). Inductive probe for flaw detection in non-magnetic metallic plates using Eddy currents. In Proceedings of I2MTC-IEEE international instrumentation and measurement technology conference, Victoria, Canada (pp. 1447–1453).

  14. Park, D. G., Angani, C. S., Kim, G. D., Kim, C. G., & Cheong, Y. M. (2009). Evaluation of pulsed Eddy current response and detection of the thickness variation in the stainless steel. IEEE Transactions on Magnetics, 45(10), 3893–3896.

    Article  Google Scholar 

  15. Nair, N. V., Melapudi, V. R., Jimenez, H. R., Liu, X., Deng, Y., Zeng, Z., et al. (2006). A GMR-based Eddy current system for NDE of aircraft structures. IEEE Transactions on Magnetics, 42(10), 3312–3314.

    Article  Google Scholar 

  16. Clarkson, P., Esward, T. J., Harris, P. M., Smith, A. A., & Smith, I. M. (2010). Software simulation of a lock-in amplifier with application to the evaluation of uncertainties in real measuring systems. Measurement Science and Technology, 21, 045106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Soni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, A.K., Rao, B.P. Lock-in Amplifier Based Eddy Current Instrument for Detection of Sub-surface Defect in Stainless Steel Plates. Sens Imaging 19, 32 (2018). https://doi.org/10.1007/s11220-018-0217-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-018-0217-8

Keywords

Navigation