Skip to main content
Log in

Sniffer Bees as a Reliable Tool for Andrographis paniculata Detection

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Honey bees of Apis mellifera could be trained to be highly reliable sniffers for the detection of Andrographis paniculata using the classical Pavlovian conditioning training method with high success rate, > 80% based on the proboscis extension reflex as a positive response to the presence of the herb. The success rate of sniffer bees was found to be in a temperature dependent manner, but not significantly affected by the heating duration (5–110 min). The variance of 7.7% success rate was observed for the heating temperature ranged 50–120 °C with the highest success rate (92.7%) at 100 °C. This could be due to the content of signature compounds released from the heated herbal samples. Three signature compounds such as dihydroactinidiolide, apiol and 6,10,14-trimethyl-2-pentadecanone were proposed to be the volatile marker of the herb since their concentrations changed in accordance with the temperature profile and success rate of sniffer bees. The volatile compounds were extracted by divinylbenzene and carboxen coated polydimethylsiloxane fiber in the headspace of solid phase micro-extraction before analyzed by GC–MS for identification. Almost 50% success rate could be achieved using the minimum amount of 20 mg herbal samples. High selectivity of the sniffer bees has also been proven by no response to another morphologically similar herb, Clinacanthus nutans which was also heat-treated in the similar manner. The sniffer bees also showed to exhibit 80% success rate to detect A. paniculata mixed with 50% C. nutans as interference in a mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Layton, J. (2017). How can you train honeybees to sniff for bombs? http://science.howstuffworks.com/bomb-sniffing-bees.htm. Accessed May 9 2017.

  2. Bromenshenk, J., Henderson, C., Seccomb, R., Rice, S., Etter, R., Bender, S., et al. (2016). Can honey bees assist in area reduction and landmine detection? Journal of Conventional Weapons Destruction, 7, 24–27.

    Google Scholar 

  3. Rodacy, P. J., Bender, S., Bromenshenk, J., Henderson, C., & Bender, G. (2002). Training and deployment of honeybees to detect explosives and other agents of harm. In Proceedings Society of Photo-Optical Instrumentation Engineers, 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII, (13 August 2002) (pp. 474–481).

  4. Suckling, D. M., & Sagar, R. L. (2011). Honeybees Apis mellifera can detect the scent of Mycobacterium tuberculosis. Tuberculosis, 91, 327–328.

    Article  Google Scholar 

  5. Chamberlain, K., Briens, M., Jacobs, J. H., Clark, S. J., & Pickett, J. A. (2012). Use of honey bees (Apis mellifera L.) to detect the presence of Mediterranean fruit fly (Ceratitis capitata Wiedemann) larvae in Valencia oranges. Journal of the Science of Food and Agriculture, 92, 2050–2054.

    Article  Google Scholar 

  6. Galizia, C. G., & Menzel, R. (2011). The role of glomeruli in the neural representation of odours: Results from optical recording studies. Journal of Insect Physiology, 47, 115–130.

    Article  Google Scholar 

  7. Akbar, S. (2011). Andrographis paniculata: A review of pharmacological activities and clinical effects. Alternative Medicine Review, 16, 66–77.

    Google Scholar 

  8. Mishra, U., Mishra, A., Kumari, R., Murthy, P., & Naik, B. (2009). Antibacterial activity of ethanol extract of Andrographis paniculata. Indian Journal of Pharmaceutical Science, 71, 436.

    Article  Google Scholar 

  9. Sule, A., Ahmed, Q. U., Latip, J., Samah, O. A., Omar, M. N., Umar, A., et al. (2012). Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro. Pharmaceutical Biology, 50, 850–856.

    Article  Google Scholar 

  10. Wiart, C., Kumar, K., Yusof, M., Hamimah, H., Fauzi, Z., & Sulaiman, M. (2005). Antiviral properties of ent-labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1. Phytotheraphy Research, 19, 1069–1070.

    Article  Google Scholar 

  11. Kapil, A., Koul, I., Banerjee, S., & Gupta, B. (1993). Antihepatotoxic effects of major diterpenoid constituents of Andrographis paniculata. Biochemical Pharmacology, 46, 182–185.

    Article  Google Scholar 

  12. Hossain, M. A., Roy, B., Ahmed, K., Chowdhury, A. S., & Rashid, M. (2007). Antidiabetic activity of Andrographis paniculata. Dhaka University Journal of Pharmaceutical Science, 6, 15–20.

    Google Scholar 

  13. Bhatnagar, S., Santapau, H., Desa, J., Maniar, A., Ghadially, N., Solomon, M., et al. (1961). Biological activity of Indian medicinal plants, Part I. Antibacterial, anti-tubercular and antifungal action. Indian Journal of Medical Research, 49, 799–813.

    Google Scholar 

  14. Thakur, A. K., Chatterjee, S. S., & Kumar, V. (2015). Adaptogenic potential of andrographolide: An active principle of the king of bitters (Andrographis paniculata). Journal of Traditional and Complementary Medicine, 5, 42–50.

    Article  Google Scholar 

  15. Lazarowych, N. J., & Pekos, P. (1998). Use of fingerprinting and marker compounds for identification and standardization of botanical drugs: Strategies for applying pharmaceutical HPLC analysis to herbal products. Drug Information Journal, 32, 497–512.

    Article  Google Scholar 

  16. Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K., & Latha, L. Y. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8, 1–10.

    Google Scholar 

  17. Wagner, H., & Bladt, S. (1996). Plant drug analysis: A thin layer chromatography atlas. Berlin: Springer.

    Book  Google Scholar 

  18. Chen, Y. R., Wen, K. C., & Her, G. R. (2000). Analysis of coptisine, berberine and palmatine in adulterated Chinese medicine by capillary electrophoresis–electrospray ion trap mass spectrometry. Journal of Chromatography A, 866, 273–280.

    Article  Google Scholar 

  19. Logan, B. K., Reinhold, L. E., Xu, A., & Diamond, F. X. (2012). Identification of synthetic cannabinoids in herbal incense blends in the United States. Journal of Forensic Science, 57, 1168–1180.

    Article  Google Scholar 

  20. Zhang, Z., Yang, M. J., & Pawliszyn, J. (1994). Solid-phase microextraction. A solvent-free alternative for sample preparation. Analytical Chemistry, 66, 844A–853A.

    Article  Google Scholar 

  21. Vas, G., & Vekey, K. (2004). Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. Journal of Mass Spectrometry, 39, 233–254.

    Article  Google Scholar 

  22. Mott, M. (2004). Bees, aiant African rats used to sniff landmines. National Geographic News 10.

  23. Menzel, R. (1999). Memory dynamics in the honeybee. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 185, 323–340.

    Article  Google Scholar 

  24. Calogirou, A., Larsen, B., & Kotzias, D. (1999). Gas-phase terpene oxidation products: A review. Atmospheric Environment, 33, 1423–1439.

    Article  Google Scholar 

  25. Dudareva, N., Pichersky, E., & Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiology, 135, 1893–1902.

    Article  Google Scholar 

  26. Cheng, A. X., Lou, Y. G., Mao, Y. B., Lu, S., Wang, L. J., & Chen, X. Y. (2007). Plant terpenoids: Biosynthesis and ecological functions. Journal of Integrative Plant Biology, 49, 179–186.

    Article  Google Scholar 

  27. Knudsen, J. T., Eriksson, R., Gershenzon, J., & Stahl, B. (2006). Diversity and distribution of floral scent. The Botanical Review, 72, 1–120.

    Article  Google Scholar 

  28. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Review, 12, 564–582.

    Article  Google Scholar 

  29. Huang, M., Sanchez-Moreiras, A. M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J., et al. (2012). The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytologist, 193, 997–1008.

    Article  Google Scholar 

  30. Hiltpold, I., Erb, M., Robert, C. A. M., & Turlings, T. C. J. (2011). Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. Plant, Cell and Environment, 34, 1267–1275.

    Article  Google Scholar 

  31. Ghelardini, C., Galeotti, N., Di Cesare Mannelli, L., Mazzanti, G., & Bartolini, A. (2001). Local anaesthetic activity of β-caryophyllene. II Farmaco, 56, 387–389.

    Article  Google Scholar 

  32. Burdock, G. A. (2004). Fenaroli’s handbook of flavor ingredients (5th ed.). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  33. Palaniswamy, U. R. (2005). Effect of light intensity on the pigment composition and oxalic acid concentrations in Kalamegh (Andrographis paniculata) leaf (pp. 109–114). International Society for Horticultural Science (ISHS), Leuven, Belgium.

  34. Whiton, R. S., & Zoecklein, B. W. (2000). Optimization of headspace solid-phase microextraction for analysis of wine aroma compounds. American Journal of Enology and Viticulture, 51, 379–382.

    Google Scholar 

  35. Rocha, S., Martins, V. M. R., Barros, A., Delgadillo, I., & Coimbra, M. A. (2001). Headspace solid phase microextraction (SPME) analysis of flavor compounds in wines. Effect of the matrix volatile composition in the relative response factors in a wine model. Journal of Agricultural and Food Chemistry, 49, 5142–5151.

    Article  Google Scholar 

  36. Kolb, B., & Ettre, L. S. (2006). Static headspace-gas chromatography: Theory and practice. Hoboken, NJ: Wiley.

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Teknologi Malaysia for the financial support from the research Grants 4H45 and 14H24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Suan Chua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerk, W.C., Chua, L.S., Sarmidi, M.R. et al. Sniffer Bees as a Reliable Tool for Andrographis paniculata Detection. Sens Imaging 19, 9 (2018). https://doi.org/10.1007/s11220-018-0194-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-018-0194-y

Keywords

Navigation