Sensing and Imaging

, 19:3 | Cite as

A Case Study on the Numerical Solution and Reduced Order Model of MEMS

Original Paper


In this paper, we develop a numerical method with a reduced order technique based on the Galerkin procedure to solve nonlinear partial differential equations of MEMS devices. We apply an explicit numerical approach based on the finite difference method (FDM) to a reduced order model of the equation of micro-beams and call it explicit-ROM. As a case study, we obtain the time response of a micro-beam under an electrostatic actuation and a mechanical shock with our method and the reduced order method (ROM) developed in previous papers. We show ROM requires taking the effect of higher order modes into consideration in order to result in accurate response, while explicit-ROM greatly improves both accuracy and speed with only the first mode, hence it is a straightforward approach that can be used in a MEMS software to obtain very fast and accurate results.


MEMS Micro-beam Nonlinear response Reduced order method Finite difference method 


  1. 1.
    Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics (Vol. 20). New York: Springer.Google Scholar
  2. 2.
    Zhang, L. X., & Zhao, Y. P. (2003). Electromechanical model of RF MEMS switches. Microsystem Technologies, 9(6–7), 420–426.CrossRefGoogle Scholar
  3. 3.
    Kacem, N., Baguet, S., Hentz, S., & Dufour, R. (2011). Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. International Journal of Non-Linear Mechanics, 46, 532–542.CrossRefGoogle Scholar
  4. 4.
    Sharma, J. N., & Kaur, R. (2015). Response of anisotropic thermoelastic micro-beam resonators under dynamic loads. Applied Mathematical Modelling, 39, 2929–2941.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Raeisifard, H., Nikkhah Bahrami, M., Yousefi-Koma, A., & Raeisi Fard, H. (2014). Static characterization and pull-in voltage of a micro-switch under both electrostatic and piezoelectric excitations. European Journal of Mechanics-A/Solids, 44, 116–124.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rahaeifard, M., Kahrobaiyan, M., Asghari, M., & Ahmadian, M. (2011). Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sensors and Actuators, A: Physical, 171, 370–374.CrossRefMATHGoogle Scholar
  7. 7.
    Challamel, N., & Wang, C. (2008). The small length scale effect for a non-local cantilever beam: A paradox solved. Nanotechnology, 19, 345703.CrossRefGoogle Scholar
  8. 8.
    Mohammad, I. Y., Ronald, M., & Daniel, J. (2006). Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces. Journal of Micromechanics and Microengineering, 16, 2463–2474.CrossRefGoogle Scholar
  9. 9.
    Rezaei Kivi, A., & Azizi, S. (2015). On the dynamics of a micro-gripper subjected to electrostatic and piezoelectric excitations. International Journal of Non-Linear Mechanics, 77, 183–192.CrossRefGoogle Scholar
  10. 10.
    Azizi, S., Javaheri, H., & Ghanati, P. (2016). On the nonlinear dynamics of tunable shock microswitch. Sensing and Imaging, 17, 20. Scholar
  11. 11.
    Azizi, S., Ghazavi, M.-R., Esmaeilzadeh Khadem, S., Rezazadeh, G., & Cetinkaya, C. (2013). Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dynamics, 73, 853–867.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ghazavi, M.-R., Rezazadeh, G., & Azizi, S. (2010). Pure parametric excitation of a micro cantilever beam actuated by piezoelectric layers. Applied Mathematical Modelling, 34, 4196–4207.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Azimloo, H., Rezazadeh, G., Shabani, R., & Sheikhlou, M. (2014). Bifurcation analysis of an electro-statically actuated micro-beam in the presence of centrifugal forces. International Journal of Non-Linear Mechanics, 67, 7–15.CrossRefGoogle Scholar
  14. 14.
    Dai, H. L., Wang, Y. K., & Wang, L. (2015). Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. International Journal of Engineering Science, 94, 103–112.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. (2003). A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 12, 672–680.CrossRefGoogle Scholar
  16. 16.
    Wang, G. W., Zhang, Y., Zhao, Y. P., & Yang, G. T. (2004). Pull-in instability study of carbon nanotube tweezers under the influence of van der Waals forces. Journal of Micromechanics and Microengineering, 14(8), 1119–1125.CrossRefGoogle Scholar
  17. 17.
    Reddy, J. N. (1993). An introduction to the finite element method (Vol. 2). New York: McGraw-Hill.Google Scholar
  18. 18.
    Askari, A. R., & Tahani, M. (2014). An alternative reduced order model for electrically actuated micro-beams under mechanical shock. Mechanics Research Communications, 57, 34–39.CrossRefGoogle Scholar
  19. 19.
    Azizi, S., Rezazadeh, G., Mobadersani, F. (2010). On the design of a micro switch to use as an airbag activator. In ASME 2010 10th biennial conference on engineering systems design and analysis (pp. 585–589).Google Scholar
  20. 20.
    Caruntu, D. I., & Martinez, I. (2014). Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators. International Journal of Non-Linear Mechanics, 66, 28–32.CrossRefGoogle Scholar
  21. 21.
    Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2005). Reduced-order models for MEMS applications. Nonlinear Dynamics, 41, 211–236.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Azizi, S., Ghazavi, M. R., Rezazadeh, G., Ahmadian, I., & Cetinkaya, C. (2014). Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dynamics, 76, 839–852.CrossRefMATHGoogle Scholar
  23. 23.
    Ghazavi, M. R., Rezazadeh, G., & Azizi, S. (2009). Finite element analysis of static and dynamic pull-in instability of a fixed-fixed micro beam considering damping effects. Sensors & Transducers, 103, 132–143.Google Scholar
  24. 24.
    Younis, M. I., Jordy, D., & Pitarresi, J. M. (2007). Computationally efficient approaches to characterize the dynamic response of microstructures under mechanical shock. Journal of Microelectromechanical Systems, 16, 628–638.CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., & Zhao, Y. P. (2006). Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sensors and Actuators, A: Physical, 127(2), 366–380.CrossRefGoogle Scholar
  26. 26.
    Sadeghian, H., & Rezazadeh, G. (2009). Comparison of generalized differential quadrature and Galerkin methods for the analysis of micro-electro-mechanical coupled systems. Communications in Nonlinear Science, 14, 2807–2816.CrossRefGoogle Scholar
  27. 27.
    Younis, M. I., Alsaleem, F., & Jordy, D. (2007). The response of clamped–clamped microbeams under mechanical shock. International Journal of Non-Linear Mechanics, 42, 643–657.CrossRefGoogle Scholar
  28. 28.
    Nayfeh, A. H., & Younis, M. I. (2005). Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 15, 1840–1847.CrossRefGoogle Scholar
  29. 29.
    Younis, M. I., Abdel-Rahman, E. M., Nayfeh, A. H. (2004) Global dynamics of MEMS resonators under superharmonic excitation. In International conference on MEMS, NANO and smart systems (pp. 694–699).Google Scholar
  30. 30.
    Fathalilou, M., Motallebi, A., Yagubizade, H., Rezazadeh, G., Shirazi, K., & Alizadeh, Y. (2009). Mechanical behavior of an electrostatically-actuated microbeam under mechanical shock. Journal of Solid Mechanics, 1, 45–57.Google Scholar
  31. 31.
    Akgöz, B., & Civalek, Ö. (2013). Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Composite Structures, 98, 314–322.CrossRefGoogle Scholar
  32. 32.
    Ansari, R., Gholami, R., & Sahmani, S. (2011). Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Composite Structures, 94, 221–228.CrossRefMATHGoogle Scholar
  33. 33.
    Jia, X. L., Yang, J., Kitipornchai, S., & Lim, C. W. (2011). Forced vibration of electrically actuated FGM micro-switches. Procedia Engineering, 14, 280–287.CrossRefGoogle Scholar
  34. 34.
    Sedighi, H. M. (2014). Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronautica, 95, 111–123.CrossRefGoogle Scholar
  35. 35.
    Askari, A. R., & Tahani, M. (2015). Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. Applied Mathematical Modelling, 39, 934–946.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUrmia University of TechnologyUrmiaIran

Personalised recommendations