Skip to main content
Log in

Buried Target Imaging: A Comparative Study

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

A wide variety of qualitative methods have been proposed for microwave imaging. It is difficult to select only one of these methods based on a priori information and measurement equipment to achieve a reliable reconstruction. Various arrangements for antennas to be used in, for instance, have been proposed which have direct impacts on the complexity of inverse methods as well as the quality of output images. In this study, four qualitative methods of the linear sampling method (LSM), time reversal (TR), diffraction tomography (DT), and back-projection (BP) have been reviewed in a 2D scenario; the performance of the methods is compared within the same framework of a multi-static configuration. The goal is to compare their resolutions and determine their advantages and drawbacks. It is shown that LSM provides the best azimuth resolution but the worst range resolution. It is almost invariant to dielectric contrast and is appropriate for a wide range of dielectric contrasts and relatively large objects. It is also shown that at relatively low dielectric contrasts, TR images are most similar to the true object, show fewer artifacts, and offer high immunity to noise. While suffering from more artifacts due to the presence of some ghost images, DT offers the best range resolution. The results also show that BP has the worst azimuth resolution when reconstructing deeply-buried targets, although its implementation is straightforward and not computationally complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gonzalez-Huici, M. A., Catapano, I., & Soldovieri, F. (2014). A comparative study of GPR reconstruction approaches for landmine detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2014.2321276.

    Google Scholar 

  2. Benedetti, M., Donelli, M., & Massa, A. (2007). Multicrack detection in two-dimensional structures by means of GA-based strategies. IEEE Transactions on Antenna and Propagation. doi:10.1109/TAP.2006.888399.

    Google Scholar 

  3. Rocca, P., Oliveri, G., & Massa, A. (2011). Differential evolution as applied to electromagnetics. IEEE Antenna and Propagation Magazine. doi:10.1109/MAP.2011.5773566.

    Google Scholar 

  4. Bozza, G., Estatico, C., Pastorino, M., & Randazzo, A. (2007). Application of an inexact-Newton method within the second-order born approximation to buried objects. IEEE Geoscience and Remote Sensing Letters. doi:10.1109/LGRS.2006.885864.

    MATH  Google Scholar 

  5. Pastorino, M. (2010). Microwave imaging. Hoboken, New Jersey: Wiley.

    Book  Google Scholar 

  6. Caorsi, S., & Gamba, P. (1999). Electromagnetic detection of dielectric cylinders by a neural network approach. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/36.752198.

    Google Scholar 

  7. Mydur, R., & Michalski, K. A. (2001). A neural-network approach to the electromagnetic imaging of elliptic conducting cylinders. Microwave Optical Technology Letters, 28, 303306.

    Article  Google Scholar 

  8. Bermani, E., Boni, A., Caorsi, S., & Massa, A. (2003). An innovative real-time technique for buried object detection. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/TGRS.2003.810928.

    Google Scholar 

  9. Massa, A., Boni, A., & Donelli, M. (2005). A classification approach based on SVM for electromagnetic subsurface sensing. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/TGRS.2005.853186.

    Google Scholar 

  10. Estatico, C., Pastorino, P., & Randazzo, A. (2005). An inexact-Newton method for short-range microwave imaging within the second-order Born approximation. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/TGRS.2005.856631.

    MATH  Google Scholar 

  11. Baussard, A., Miller, E. L., & Lesselier, D. (2004). Adaptive multiscale reconstruction of buried objects. Inverse Problems, 20, S1–S15.

    Article  MATH  Google Scholar 

  12. Franceschini, D., Massa, A., Pastorino, M., & Zanetti, A. (2005). Multiresolution iterative retrieval of real inhomogeneous targets. Inverse Problems, 21, S51–S63.

    Article  MATH  Google Scholar 

  13. Oliveri, G., Zhong, Y., Chen, X., & Massa, A. (2011). Multi-resolution subspace-based optimization for inverse scattering. Journal of Optical Society of America A. doi:10.1364/JOSAA.32.002218.

    Google Scholar 

  14. Salucci, M., Oliveri, G., Randazzo, A., Pastorino, M., & Massa, A. (2014). Electromagnetic subsurface prospecting by a multifocusing inexact Newton method within the second-order Born approximation. Journal of Optical Society of America A. doi:10.1364/JOSAA.31.001167.

    Google Scholar 

  15. Salucci, M., Oliveri, G., Randazzo, A., Pastorino, M., & Massa, A. (2014). Electromagnetic subsurface prospecting by a fully nonlinear multifocusing inexact Newton method. Journal of Optical Society of America A. doi:10.1364/JOSAA.31.002618.

    Google Scholar 

  16. Salucci, M., Oliveri, G., & Massa, A. (2015). GPR prospecting through an inverse-scattering frequency-hopping multifocusing approach. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/TGRS.2015.2444391.

    Google Scholar 

  17. Salucci, M., Poli, L., & Massa, A. (2017). Advanced multi-frequency GPR data processing for non-linear deterministic imaging. Signal Processing. doi:10.1016/j.sigpro.2016.06.019.

    Google Scholar 

  18. Catapano, I., Crocco, L., D’Urso, M., & Isernia, T. (2007). On the effect of support estimation and of a new model in 2-D inverse scattering problems. IEEE Transactions on Antenna and Propagation. doi:10.1109/TAP.2007.898647.

    MATH  Google Scholar 

  19. Lopez-Sanchez, J. M., & Fortuny-Guasch, J. (2000). 3-D radar imaging using range migration techniques. IEEE Transactions on Antenna and Propagation. doi:10.1109/8.855491.

    Google Scholar 

  20. Feng, X., & Sato, M. (2004). Pre-stack migration applied to GPR for landmine detection. Inverse Problems, 20, 99–115.

    Article  MATH  Google Scholar 

  21. Zhuge, X., Yarovoy, A. G., Savelyev, T., & Ligthart, L. (2010). Modified Kirchhoff migration for UWB MIMO array-based radar imaging. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/TGRS.2010.2040747.

    Google Scholar 

  22. Johansson, E.M. and Mast, J.E. (1994). Three-dimensional ground penetrating radar imaging using synthetic aperture time-domain focusing. Proceedings SPIE.

  23. Gurbuz, A.C., Counts, T., Kim, K., McClellan, J.H., & Scott, W.R. (2006). Application of multi-static inversion algorithms to landmine detection. Proceedings SPIE.

  24. Cakoni, F., Fares, M., & Haddar, H. (2006). Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects. Inverse Problems, 22, 845–867.

    Article  MathSciNet  MATH  Google Scholar 

  25. Catapano, I., & Crocco, L. (2009). An imaging method for concealed targets. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/TGRS.2008.2010773.

    Google Scholar 

  26. Liao, D., & Dogaru, T. (2012). Full-wave characterization of rough terrain surface scattering for forward-looking radar applications. IEEE Transactions on Antenna and Propagation. doi:10.1109/TAP.2012.2201076.

    MathSciNet  MATH  Google Scholar 

  27. Hansen, T. B., & Johansen, P. M. (2000). Inversion scheme for ground penetrating radar that takes into account the planar air-soil interface. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/36.823944.

    Google Scholar 

  28. Meincke, P. (2001). Linear GPR Inversion for lossy soil and a planar air-soil interface. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/36.975005.

    Google Scholar 

  29. Cui, T. J., & Chew, W. C. (2000). Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy earth. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/36.851784.

    Google Scholar 

  30. Nguyen, L., Dogaru, T., & Innocenti, R. (2009). 3-D SAR image formation for underground targets using ultra-wideband (UWB) radar. Proceedings SPIE. doi:10.1117/12.829631.

    Google Scholar 

  31. Zhang, P., Zhang, X., & Fang, G. (2013). Comparison of the imaging resolutions of time reversal and back-projection algorithms in EM inverse scattering. IEEE Geoscience and Remote Sensing Letters. doi:10.1109/LGRS.2012.2206012.

    Google Scholar 

  32. den Dekker, A. J., & van den Bos, A. (1997). Resolution: A survey. Journal of the Optical Society of America A. doi:10.1364/JOSAA.14.000547.

    Google Scholar 

  33. Gilmore, C., Mojabi, P., Zakaria, A., Pistorius, S., & LoVetri, J. (2010). On super-resolution with an experimental microwave tomography system. IEEE Antennas and Wireless Propagation Letters. doi:10.1109/LAWP.2010.2049471.

    Google Scholar 

  34. Chen, F., & Chew, W. C. (1998). Experimental verification of super resolution in nonlinear inverse scattering. Applied Physics Letters. doi:10.1063/1.121547.

    Google Scholar 

  35. Cui, T. J., Chew, W. C., Yin, X. X., & Hong, W. (2004). Study of resolution and super resolution in electromagnetic imaging for half-space problems. IEEE Transactions on Antenna and Propagation. doi:10.1109/TAP.2004.829847.

    MathSciNet  MATH  Google Scholar 

  36. Brandfass, M., Lanterman, A. D., & Warnick, K. F. (2001). A comparison of the Colton–Kirsch inverse scattering methods with linearized tomographic inverse scattering. Inverse Problems, 17, 1797–1816.

    Article  MathSciNet  MATH  Google Scholar 

  37. Hesford, A.J., & Chew, W.C. (2005). A comparison of the computational efficiency of three inverse scattering methods. In IEEE antennas and propagation society international symposium, (pp. 4436–4439).

  38. Zhuge, X., Savelyev, T.G., Yarovoy, A.G., Ligthart, L.P., & Levitas, B. (2009). Comparison of Different Migration Techniques for UWB Short-Range Imaging. In Proceeding 6th European radar conference (EuRAD), (pp. 184–187).

  39. Ghaderi Aram, M., Haghparast, M., Abrishamian, M. S., & Mirtaheri, A. (2015). Comparison of imaging quality between linear sampling method and time reversal in microwave imaging problems. Inverse Problems in Science and Engineering. doi:10.1080/17415977.2015.1104308.

    Google Scholar 

  40. Thanh, N.T., & van Kempen, L., et al. (2008). Comparison of Basic Inversion Techniques for Through-Wall Imaging Using UWB Radar. In Proceeding 5th European radar conference (EuRAD), (pp. 140–143).

  41. Catapano, I., Soldovieri, F., Alli, G., Mollo, G., & Antonio Forte, L. (2015). On the reconstruction capabilities of beamforming and a microwave tomographic approach. IEEE Geoscience and Remote Sensing Letters. doi:10.1109/LGRS.2015.2476514.

    Google Scholar 

  42. Persico, R., Bernini, R., & Soldovieri, F. (2005). The role of the measurement configuration in inverse scattering from buried objects under the Born approximation. IEEE Transactions on Antenna and Propagation. doi:10.1109/TAP.2005.848468.

    Google Scholar 

  43. Catapano, I., Crocco, L., & Isernia, T. (2008). Improved sampling methods for shape reconstruction of 3-D buried targets. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/TGRS.2008.921745.

    Google Scholar 

  44. Hansen, T. B., & Meincke, P. (2002). Scattering from a buried circular cylinder illuminated by a three-dimensional source. Radio Science. doi:10.1029/2000RS002573.

    Google Scholar 

  45. Panzer, B. (2004). Development of An Electrically Small Vivaldi Antenna: The CReSIS Aerial Vivaldi (CAV-A). M.Sc. dissertation University of Kansas, USA.

  46. Colton, D., Haddar, H., & Piana, M. (2003). The linear sampling method in inverse electromagnetic scattering theory. Inverse Problems, 19(6), S105–S137.

    Article  MathSciNet  MATH  Google Scholar 

  47. Leuschen, C. J., & Plumb, R. G. (2001). A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/36.921410.

    Google Scholar 

  48. Cui, T. J., & Chew, W. C. (2001). Correction to: Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy earth. IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/36.905256.

    Google Scholar 

  49. Giannopoulos, A. (2005). Modelling ground penetrating radar by GprMax. Construction and Building Materials. doi:10.1016/j.conbuildmat.2005.06.007.

    Google Scholar 

  50. Semenov, S., Svenson, R., Bulyshev, A., Souvorov, A., et al. (2000). Spatial resolution of microwave tomography for detection of myocardial ischemia and infarction–experimental study on two-dimensional models. IEEE Transactions on Microwave Theory and Techniques. doi:10.1109/22.842025.

    Google Scholar 

  51. Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2010.161.

    Google Scholar 

  52. Alqadah, H. F., & Valdivia, N. (2013). A frequency based constraint for a multi-frequency linear sampling method. Inverse Problems. doi:10.1088/0266-5611/29/9/095019.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Ghaderi Aram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi Aram, M., Dehmollaian, M. & Khaleghi, A. Buried Target Imaging: A Comparative Study. Sens Imaging 18, 19 (2017). https://doi.org/10.1007/s11220-017-0169-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-017-0169-4

Keywords

Navigation