Skip to main content
Log in

Developing Algorithms to Improve Defect Extraction and Suppressing Undesired Heat Patterns in Sonic IR Images

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Sonic IR imaging is an emerging NDE technology. This technology uses short pulses of ultrasonic excitation together with infrared imaging to detect defects in materials and structures. Sonic energy is coupled to the specimen under inspection by means of direct contact between the transducer tip and the specimen at some convenient point. This region which is normally in the field of view of the camera appears as intensity peak in the image which might be misinterpreted as defects or obscure the detection and/or extraction of the defect signals in the proximity of the contact region. Moreover, certain defects may have very small heat signature or being buried in noise. In this paper, we present algorithms to improve defect extraction and suppression of undesired heat patterns in sonic IR images. Two approaches are presented, each fits to a specific category of sonic IR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Favro, L., Han, X., Ouyang, Z., Sun, G., Sui, H., & Thomas, R. (2000). Infrared imaging of defects heated by a sonic pulse. Review of Scientific Instruments, 71(6), 2418–2421.

    Article  Google Scholar 

  2. Favro, L., Thomas, R., Han, X., Ouyang, Z., Newaz, G., & Gentile, D. (2001). Sonic infrared imaging of fatigue cracks. International Journal of Fatigue, 23, 471–476.

    Article  Google Scholar 

  3. Han, X., Favro, L., Ouyang, Z., & Thomas, R. (2001). Thermosonics: Detecting cracks and adhesion defects using ultrasonic excitation and infrared imaging. The Journal of Adhesion, 76(2), 151–162.

    Article  Google Scholar 

  4. Han, X., Favro, L., Ouyang, Z., & Thomas, R. (2003). Sonic IR imaging and vibration pattern studies of cracks in an engine disk. Review of Progress in Quantitative Nondestructive Evaluation, 657(22), 513–516.

    Article  Google Scholar 

  5. Han, X., Lu, J., Islam, M. S., Li, W., Zeng, Z., Kashyap, N., et al. (2005). Developing sonic IR imaging NDE for aircraft structures. Review of Progress in Quantitative Nondestructive Evaluation, 760(1), 632–636.

    Article  Google Scholar 

  6. Han, X., Zhao, X., Zhang, D., He, Q., Song, Y., Lubowicki, A., et al. (2011). Studying impact damage on carbon fiber reinforced aircraft composite panels with sonicir. Review of Progress in Quantitative Nondestructive Evaluation, 1335(1), 438–443.

    Google Scholar 

  7. Han, X., & He, Q. (2006). Developing thermal energy computing tools for sonic infrared imaging. In M. Tomizuka, C.-B. Yun, & V. Giurgiutiu (Eds.), Smart structures and materials (p. 617432). Bellingham, WA: International Society for Optics and Photonics (SPIE).

    Google Scholar 

  8. Gonzalez, R., & Woods, R. (2009). Digital image processing (3rd ed.). NJ: Pearson Education.

    Google Scholar 

  9. Budzier, H., & Gerlach, G. (2011). Thermal infrared sensors: Theory, optimisation and practice. Chichester: Wiley.

    Book  Google Scholar 

  10. Obeidat, O., Yu, Q., & Han, X. (2016). Develop algorithms to improve detectability of defects in Sonic IR imaging NDE. In D. E. Chimenti & L. J. Bond (Eds.), Review of progress in quantitative nondestructive evaluation. Melville, NY: American Institute of Physics (AIP).

    Google Scholar 

  11. Guo, Xingwang, & Mao, Yuxin. (2015). Defect identification based on parameter estimation of histogram in ultrasonic IR thermography. Mechanical Systems and Signal Processing, 58, 218–227.

    Article  MathSciNet  Google Scholar 

  12. Feng, F., Zhang, C., Yuan, J., et al. (2011). Identification and reconstruction of cracks in ultrasonic IR imaging. Non destruct. Testing, 33(11), 17–20. (In Chinese).

    Google Scholar 

  13. Zeng, Z., Tao, N., Feng, L., Zhang, C., & Han, X. (2013). Developing signal processing method for recognizing defects in metal samples based on heat diffusion properties in sonic infrared image sequences. In M. T. Eismann (Ed.), Optical engineering (Vol. 52, p. 61309). Bellingham, WA: International Society for Optics and Photonics (SPIE).

    Google Scholar 

  14. Han, X., Favro, L. D., & Thomas, R. L. (2003). Sonic IR imaging and vibration pattern studies of cracks in an engine disk. In AIP conference proceedings (Vol. 657, No. 22, pp. 513–516).

  15. Han, X., Li, W., Zeng, Z., Favro, L. D., Newaz, G. M., & Thomas, R. L. (2005). Study of the effect of geometry in sonic IR imaging. In D. O. Thompson & D. E. Chimenti (Eds.), Review of progress in quantitative nondestructive evaluation (Vol. 760, No. 1, pp. 637–641). Melville, NY: American Institute of Physics (AIP).

    Google Scholar 

  16. Han, X., Favro, L. D., & Thomas, R. L. (2010). Sonic IR imaging of delaminations and disbonds in composites. Journal of Physics. D. Applied Physics, 44(3), 034013.

    Article  Google Scholar 

  17. Han, X., Ar-Rasheed, J. M., Zhang, D., & Lubowicki, A. (2016). Evaluation of sonic IR handheld system on composite impact damage detection. In D. E. Chimenti & L. J. Bond (Eds.), 42nd annual review of progress in quantitative nondestructive evaluation (Vol. 1706, p. 100007). Melville, NY: American Institute of Physics (AIP).

    Google Scholar 

  18. Obeidat, O., Yu, Q., & Han, X. (2017, in press). Further development of image processing algorithms to improve detectability of defects in sonic IR NDE. In D. E. Chimenti & L. J. Bond (Eds.), Review of progress in quantitative nondestructive evaluation. Melville, NY: American Institute of Physics.

  19. Thomas, R., Favro, L., Han, X., & Ouyang, Z. (2000). Thermal methods used in composite inspection. Comprehensive Composite Materials, 5, 427–446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Obeidat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeidat, O., Yu, Q. & Han, X. Developing Algorithms to Improve Defect Extraction and Suppressing Undesired Heat Patterns in Sonic IR Images. Sens Imaging 17, 22 (2016). https://doi.org/10.1007/s11220-016-0148-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-016-0148-1

Keywords

Navigation