Skip to main content

Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography


For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two dimensions and the properties of the algorithms and the implementations are investigated, both theoretically and on simulated data obtained from a numerical phantom. The numerical results show similarities and differences between the proposed algorithms, and they justify that the choice of algorithm should be based on a theoretical analysis of the underlying inverse problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Ammari, H. (2008). An introduction to mathematics of emerging biomedical imaging. Mathématiques et Applications. New York: Springer. ISBN: 9783540795537.

  2. Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M., & Fink, M. (2008). Electrical impedance tomography by elastic deformation. SIAM Journal on Applied Mathematics, 68(6), 1557–1573. doi:10.1137/070686408.

  3. Bal, G. (2013). Cauchy problem for ultrasound-modulated EIT. Analysis & PDE, 6(4), 751–775. doi:10.2140/apde.2013.6.751.

  4. Bal, G. (2012). Hybrid inverse problems and internal functionals. Inverse Problems and Applications: Inside Out, II(60), 325–368.

    Google Scholar 

  5. Bal, G. (2014). Hybrid inverse problems and redundant systems of partial differential equations. AMS Contemporary Mathematics, 615, 15–47. doi:10.1090/conm/615.

  6. Bal, G., Naetar, W., Scherzer, O., & Schotland, J. (2013). The Levenberg–Marquardt iteration for numerical inversion of the power density operator. Journal of Inverse and Ill-Posed Problems, 21(2), 265–280. doi:10.1515/jip-2012-0091.

  7. Birgül, Ö., Eyüboglu, B. M., & Ider, Y. Z. (2003). Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns. Physics in Medicine and Biology, 48(5), 653–671. doi:10.1088/0031-9155/48/5/307.

  8. Capdeboscq, Y., Fehrenbach, J., de Gournay, F., & Kavian, O. (2009). Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements. SIAM Journal on Imaging Sciences, 2(4), 1003–1030. doi:10.1137/080723521.

  9. Evans, L. C. (2010). Partial differential equations. Graduate studies in mathematics. USA: American Mathematical Society. ISBN: 9780821849743.

  10. Gebauer, B., & Scherzer, O. (2008). Impedance-acoustic tomography. SIAM Journal on Applied Mathematics, 69(2), 565–576. doi:10.1137/080715123.

  11. Hagen, H. (1992). Curve and surface design. Society for Industrial and Applied Mathematics. ISBN: 9781611971651.

  12. Hagen, R., Roch, S., & Silbermann, B. (2000). C*-algebras and numerical analysis. Chapman & Hall/CRC pure and applied mathematics. Taylor & Francis. ISBN: 9780824704605.

  13. Henderson, A. (2004). The ParaView guide. Clifton Park, NY: Kitware. ISBN: 1930934149.

  14. Hoell, N., Moradifam, A., & Nachman, A. (2014). Current density impedance imaging of an anisotropic conductivity in a known conformal class. SIAM Journal on Mathematical Analysis, 46(3), 1820–1842. doi:10.1137/130911524.

  15. Hoffmann, K., Bal, G., & Knudsen, K. On the propagation of singularities for a class of hybrid inverse problems. Preprint.

  16. Kim, Y. J., Kwon, O., Seo, J. K., & Woo, E. J. (2003). Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography. 19(5), 1213–1225. doi:10.1088/0266-5611/19/5/312.

  17. Kuchment, P. (2012). Mathematics of hybrid imaging: A brief review. In: Springer Proceedings in Mathematics, 183–208. doi:10.1007/978-88-470-1947-8_12.

  18. Kuchment, P., & Kunyansky, L. (2011). 2D and 3D reconstructions in acousto-electric tomography. Inverse Problems, 27(5), 055013. doi:10.1088/0266-5611/27/5/055013.

  19. Kuchment, P., & Steinhauer, D. (2012). Stabilizing inverse problems by internal data. In: Inverse Problems, 28(8), 084007. doi:10.1088/0266-5611/28/8/084007.

  20. Kwon, O., Woo, E. J., Yoon, J.-R., & Seo, J. K. (2002). Magnetic resonance electrical impedance tomography (MREIT): Simulation study of Jsubstitution algorithm. IEEE Transactions on Biomedical Engineering, 49(2), 160–167. doi:10.1109/10.979355.

  21. Langtangen, H. P. (2003). Computational partial differential equations: Numerical methods and diffpack programming. Texts in computational science and engineering. Berlin, Heidelberg: Springer. ISBN: 9783540434160.

  22. Logg, A., Mardal, K.-A., & Wells, G. (2012). Automated solution of differential equations by the finite element method: The FEniCS book. Lecture Notes in Computational Science and Engineering: Springer. ISBN: 9783642230998.

  23. Monard, F., & Bal, G. (2013). Inverse anisotropic conductivity from power densities in dimension \(n\ge 3\). Communications in Partial Differential Equations, 38(7), 1183–1207. doi:10.1080/03605302.2013.787089.

  24. Monard, F., & Bal, G. (2012). Inverse anisotropic diffusion from power density measurements in two dimensions. Inverse Problems, 28(8), 084001. doi:10.1088/0266-5611/28/8/084001.

  25. Moradifam, A., Nachman, A., & Timonov, A. (2012). A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data. Inverse Problems, 28(8), 084003. doi:10.1088/0266-5611/28/8/084003.

  26. Mueller, J. L., & Siltanen, S. (2012). Linear and nonlinear inverse prob- lems with practical applications. Computational Science and Engineering: SIAM. ISBN: 9781611972344.

  27. Nachman, A., Tamasan, A., & Timonov, A. (2011). Current density impedance imaging. Tomography and Inverse Transport Theory. doi:10.1090/conm/559/11076.

  28. Nachman, A., Tamasan, A., & Timonov, A. (2009). Recovering the conductivity from a single measurement of interior data. Inverse Problems, 25(3), 035014. doi:10.1088/0266-5611/25/3/035014.

  29. Oh, S. H., Lee, B. I., Woo, E. J., Lee, S. Y., Cho, M. H., Kwon, O., et al. (2003). Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Physics in Medicine and Biology, 48(19), 3101–3116. doi:10.1088/0031-9155/48/19/001.

  30. Seo, J. K., & Woo, E. J. (2011). Magnetic resonance electrical impedance tomography (MREIT). SIAM Review, 53(1), 40–68. doi:10.1137/080742932.

  31. Seo, J. K., Yoon, J.-R., Woo, E. J., & Kwon, O. (2003). Reconstruction of conductivity and current density images using only one component of magnetic field measurements. IEEE Transactions on Biomedical Engineering, 50(9), 1121–1124. doi:10.1109/tbme.2003.816080.

  32. Tartar, L. (2007). An introduction to Sobolev spaces and interpolation spaces. Lecture notes of the Unione Matematica Italiana. Berlin, Heidelberg: Springer. ISBN: 9783540714835.

  33. Widlak, T., & Scherzer, O. (2012). Hybrid tomography for conductivity imaging. Inverse Problems, 28(8), 084008. doi:10.1088/0266-5611/28/8/084008.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kristoffer Hoffmann.

Additional information

This article is part of the Topical Collection on Hybrid Imaging and Image Fusion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, K., Knudsen, K. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography. Sens Imaging 15, 96 (2014).

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI:


  • Hybrid inverse problems
  • Iterative reconstruction methods
  • Impedance tomography
  • Current density impedance imaging
  • Magnetic resonance electrical impedance tomography
  • Ultrasound modulated electrical impedance tomography