Advertisement

Sensing and Imaging

, 15:95 | Cite as

Performance Analysis of Grey-World-based Feature Detection and Matching for Mobile Positioning Systems

  • Wan Mohd Yaakob Wan Bejuri
  • Mohd Murtadha Mohamad
Original Paper

Abstract

This paper introduces a new grey-world-based feature detection and matching algorithm, intended for use with mobile positioning systems. This approach uses a combination of a wireless local area network (WLAN) and a mobile phone camera to determine positioning in an illumination environment using a practical and pervasive approach. The signal combination is based on retrieved signal strength from the WLAN access point and the image processing information from the building hallways. The results show our method can handle information better than Harlan Hile’s method relative to the illumination environment, producing lower illumination error in five (5) different environments.

Keywords

Wireless LAN Resource localization Emergency response GPS 

Notes

Acknowledgments

This work has been funded by the Research University Grant (RUG) under Project No. Q.130000.2628.08J05.

References

  1. 1.
    Ivanov, R. (2012). RSNAVI: An RFID-based context-aware indoor navigation system for the blind. In Proceedings of the 13th international conference on computer systems and technologies (pp. 313–320). New York, NY: ACM.Google Scholar
  2. 2.
    Esposito, C., & Ficco, M. (2011). Deployment of RSS-based indoor positioning systems. International Journal of Wireless Information Networks, 18(4), 224–242.CrossRefGoogle Scholar
  3. 3.
    Lee, B.-G., & Chung, W.-Y. (2011). Multitarget three-dimensional indoor navigation on a PDA in a wireless sensor network. IEEE Sensors Journal, 11(3), 799–807.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Liao, L., Lin, K., Wang, X., Lai, X., & Vuong, S. T. (2011). WiFi positioning overview. International Journal of Communication Networks and Distributed Systems, 7(3), 229–248.CrossRefGoogle Scholar
  5. 5.
    Giorgetti, G., Farley, R., Chikkappa, K., Ellis, J., & Kaleas, T. (2012). Cortina: Collaborative indoor positioning using low-power sensor networks. Journal of Location Based Services, 6(3), 137–160.CrossRefGoogle Scholar
  6. 6.
    Yen, C.-P., & Voltz, P. J. (2011). Indoor positioning based on statistical multipath channel modeling. EURASIP Journal on Wireless Communications and Networking, 2011(1), 189.CrossRefGoogle Scholar
  7. 7.
    Lu, M. (2012). A framework for indoor construction resources tracking by applying wireless sensor networks. Canadian Journal Civil Engineering, 39(9), 1083–1088.CrossRefGoogle Scholar
  8. 8.
    Shen X, Lu M (2012) A framework for indoor construction resources tracking by applying wireless sensor networks 11. This paper is one of a selection of papers in this Special Issue on Construction Engineering and Management. Canadian Journal Civil Engineering 39(9), 1083–1088.Google Scholar
  9. 9.
    Nicoli, M., Gezici, S., Sahinoglu, Z., & Wymeersch, H. (2011). Localization in mobile wireless and sensor networks. Eurasip Journal on Wireless Communications and Networking, 2011(1), 197.CrossRefGoogle Scholar
  10. 10.
    Mensing, C., Sand, S., & Dammann, A. (2010). Hybrid data fusion and tracking for positioning with GNSS and 3GPP-LTE. International Journal of Navigation and Observation, 2010, 1–12.Google Scholar
  11. 11.
    Liew, S. C., Tan, K. G., & Tan, C. P. (2006). Non-Taylor series based positioning method for hybrid GPS/cellphone system. Journal of Electromagnetic Waves and Applications, 20(6), 717–729.CrossRefGoogle Scholar
  12. 12.
    Liew, S. C., Tan, K. G., & Lim, T. S. (2006). Investigation of direct A-GPS positioning for hybrid E-OTD/GNSS. Journal of Electromagnetic Waves and Applications, 20(1), 79–87.CrossRefGoogle Scholar
  13. 13.
    Yang, H., Park, K., Lee, J. G., & Chung, H. (2000). A rotating sonar and a differential encoder data fusion for map-based dynamic positioning. Journal of Intelligent Robotic Systems, 29(3), 211–232.zbMATHCrossRefGoogle Scholar
  14. 14.
    Shoval, S., Zeitoun, I., & Lenz, E. (1997). Implementation of a Kalman filter in positioning for autonomous vehicles, and its sensitivity to the process parameters. International Journal of Advanced Manufacturing Technology, 13(10), 738–746.CrossRefGoogle Scholar
  15. 15.
    Yost, M. G., Gadgil, A. J., Drescher, A. C., Zhou, Y., Simonds, M. A., Levine, S. P., et al. (1994). Imaging indoor tracer-gas concentrations with computed tomography: experimental results with a remote sensing FTIR system. American Industrial Hygiene Association Journal, 55(5), 395–402.CrossRefGoogle Scholar
  16. 16.
    Cao, Z. L., Oh, S. J., & Hall, E. L. (1986). Dynamic omnidirectional vision for mobile robots. Journal of Robotic Systems, 3(1), 5–17.CrossRefGoogle Scholar
  17. 17.
    Kosaka, A., Pan, J. (1995). Purdue experiments in model-based vision for hallway navigation. In Proceedings of the workshop on vision for robots in IROS’95, (pp. 87–96).Google Scholar
  18. 18.
    Karlsson, N., di Bernardo, E., Ostrowski, J., Goncalves, L., Pirjanian, P., & Munich, M.E. (2005). The vSLAM algorithm for robust localization and mapping. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005, (pp. 24–29).Google Scholar
  19. 19.
    Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: Exploring photo collections in 3D. ACM Transactions on Graphics, 25(3), 835–846.CrossRefGoogle Scholar
  20. 20.
    Hile, H., & Borriello, G. (2008). Positioning and orientation in indoor environments using camera phones. IEEE Computer Graphics and Applications, 28(4), 32–39.CrossRefGoogle Scholar
  21. 21.
    T. Ruiz-López, J. L. Garrido, K. Benghazi, and L. Chung, “A Survey on Indoor Positioning Systems: Foreseeing a Quality Design,” in Distributed Computing and Artificial Intelligence, vol. 79, A. P. Leon F. de Carvalho, S. Rodríguez-González, J. F. Paz Santana, and J. M. C. Rodríguez, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 373–380.Google Scholar
  22. 22.
    Bejuri, W. M. Y. W., Mohamad, M. M., Sapri, M., & Rosly, M. A. (2012). Investigation of Color Constancy for Ubiquitous Wireless LAN/Camera Positioning: An Initial Outcome. Int. J. Adv. Comput. Technol., 4(7), 269–280.Google Scholar
  23. 23.
    Bejuri, W. M. Y. W., Mohamad, M. M., & Sapri, M. (2011). Ubiquitous positioning: A taxonomy for location determination on mobile navigation system. International Journal of Signal Image Processing, 2(1), 24–34.CrossRefGoogle Scholar
  24. 24.
    Bejuri, W.M.Y.W., Mohamad, M.M., Sapri, M., & Rosly, M.A. (2012)“Ubiquitous WLAN/camera positioning using inverse intensity chromaticity space-based feature detection and matching: a preliminary result. In International conference on man-machine systems 2012. Penang, Malaysia.Google Scholar
  25. 25.
    Chakrabarti, A., Hirakawa, K., & Zickler, T. (2010). Computational color constancy with spatial correlations. Tech. Rep. TR–09–10. Harvard School of Engineering and Applied Sciences.Google Scholar
  26. 26.
    Bahl, P., & Padmanabhan, V.N. (2000). RADAR: An in-building RF-based user location and tracking system. In Proceedings IEEE INFOCOM 2000. Nineteenth annual joint conference of the IEEE computer and communications societies (Vol. 2, pp. 775–784).Google Scholar
  27. 27.
    Wettschereck, D., Dietterich, T.G., & Sutton, R. (1995). An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms. In Machine learning, (pp. 5–28).Google Scholar
  28. 28.
    Comaniciu, D., & Meer, P. (1999). Mean shift analysis and applications. In The Proceedings of the seventh IEEE international conference on computer vision, 1999 (Vol. 2, pp. 1197–1203).Google Scholar
  29. 29.
    Guru, D.S., Dinesh, R., & Nagabhushan, P. (2004). Boundary based corner detection and localization using new ‘cornerity’ index: a robust approach. In Proceedings First Canadian conference on computer and robot vision, 2004 (pp. 417–423).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of ComputingUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Faculty of Information and Communication TechnologyUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia

Personalised recommendations