Skip to main content
Log in

Goubau Ice Sensor Transitions for Electric Power Lines

  • Original Paper
  • Published:
Sensing and Imaging: An International Journal Aims and scope Submit manuscript

Abstract

In this paper, 50 Ohm coaxial line transitions required for sensing dielectric (or ice) coatings on power transmission lines (Goubau lines) at microwave frequencies (below 10 GHz) are proposed, designed and simulated. Two different types of transitions are needed: uni- and bi-directional. Computer simulations are performed using finite element methods (FEM). Good performance results using both types of microwave transitions are obtained. Design and simulation results show that Goubau line type transitions can be realized for various applications including detection of ice layers and microwave communications on electric power transmission lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Laforte, J. L., Allaire, M. A., & Laflamme, J. (1998). State-of-the-art on power line de-icing. Atmospheric Research, 46(1–2), 143–158. doi:10.1016/S0169-8095(97)00057-4.

    Article  Google Scholar 

  2. Sullivan, C. R., Petrenko, V. F., McCurdy, J. D., & Kozliouk, V. (2003). Breaking the ice [transmission line icing]. IEEE Industry Applications Magazine, 9(5), 49–54. doi:10.1109/MIA.2003.1227872.

    Article  Google Scholar 

  3. Baliberdin, L. L., Kozlova, M. A., & Shershnev, Y. A. (2005). Model group of controlled installation for melting ice on transmission line conductors. Power Tech, (2005) IEEE Russia, 27–30 June 2005, (pp. 1–5). doi: 10.1109/PTC.2005.4524759.

  4. Bai Yunqing, Zhou Kongjun, & Zheng Ke. (2006). The Research of DC Deicing Technology in Power Line. Power system technology, PowerCon 2006. International conference on October2006 (pp. 1–7). doi: 10.1109/ICPST.2006.321857.

  5. Egbert, R. I., Schrag, R. L., Bernhart, W. D., Zumwalt, G. W., & Kendrew, T. J. (1989). An investigation of power line de-icing by electro-impulse methods. IEEE Transactions on Power Delivery, 4, 1855–1861. doi:10.1109/61.32682.

    Article  Google Scholar 

  6. He Changhong, Liu Jiajun, & Zhang Xiaoqing. (2008). Research of rapid parallel operation, automatic ice-melting on transmission lines, static VAR & compound system. 2008 International conference on high voltage engineering and application, ICHVE 2008, 9–12 Nov. 2008 (pp. 128–133).

  7. Davidson, C. C., Horwill, C., Granger, M., & Dery, A. (2006) A power-electronics-based transmission line de-icing system. The 8th IEE international conference on AC and DC power transmission. ACDC 2006, 28–31 March (pp. 135–139).

  8. Goubau, G. (1950). Surface waves and their application to transmission line. Journal of Applied Physics, 21, 1119–1128. doi:10.1063/1.1699553.

    Article  MATH  MathSciNet  Google Scholar 

  9. Goubau, G. (1951). Single-conductor surface-wave transmission lines. Proceedings of the IRE, 39, 619–624. doi:10.1109/JRPROC.1951.233782.

    Article  Google Scholar 

  10. Alonso, K., & Hagmann, M. J. (2000). Simulations of tapered Goubau line for coupling of microwave signals generated by resonant laser-assisted field emission. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 18, 1009–1013. doi:10.1116/1.591345.

    Article  Google Scholar 

  11. Alonso, K., & Hagmann, M. J. (2001). Comparison of three different methods for coupling of microwave signals generated by resonant laser-assisted field emission. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 19, 68–71. doi:10.1116/1.1340016.

    Article  Google Scholar 

  12. Xu, Y., & Bosisio, R. G. (2004). A study of Goubau line for submillimeter wave and terahertz frequency applications. Proceedings IEE, Microwaves, Antennas and Propagation, 151, 460–464.

    Article  Google Scholar 

  13. Wang, K., & Mittleman, D. M. (2004). Metal wires for terahertz wave guiding. Nature, 432, 376–379.

    Article  Google Scholar 

  14. Xu, Y., & Bosisio, R. G. (2005). On the application of Goubau lines for millimeter and submillimeter wave gas sensors. Proceedings IEE, Microwaves Antennas and propagation , 152, 400–405.

    Article  Google Scholar 

  15. Xu, Y., & Bosisio, R. G. (2007). On the measurement of thickness of ice layers on power transmission lines. Sensing and Imaging, 8, 73–110.

    Article  Google Scholar 

  16. Dutta Roy, S. C. (1979). Optimum design of an exponential line transformer for wide-band matching at low frequencies. Proceedings of the IEEE, 67, 1563–1564.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Natural Science and Engineering Research Council of Canada (NSERC) for financial support and to J. S. Decarie for assistance in providing numerical programs such as HFSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato G. Bosisio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Bosisio, R.G. Goubau Ice Sensor Transitions for Electric Power Lines. Sens Imaging 10, 31–40 (2009). https://doi.org/10.1007/s11220-009-0044-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11220-009-0044-z

Keywords

Navigation