Skip to main content
Log in

Propagation of Radar Pulses from a Horizontal Dipole in Variable Dielectric Ground: A Numerical Approach

  • Published:
Subsurface Sensing Technologies and Applications Aims and scope Submit manuscript

Abstract.

We numerically investigate the propagation of radar type short pulses from a horizontal dipole in the presence of some simple models of inhomogeneous ground with a flat surface. We use 3-dimensional (3-D) pseudospectral time domain (PSTD) and 2-D finite difference time domain forward modeling to determine the range and azimuth dependence of electric field components and to simulate events in a moveout profile. The models are: (i) a uniform half space with either high or low conductivity; (ii) a vertical dielectric wedge; (iii) a surface thin layer with a monocline wedge overlaid on the dielectric half space. Our homogeneous results agree with the analytical solutions, and more clearly show the significant vertical electric field component, which occurs for all models. The incorporation of an anomalous dielectric quadrant does not affect the air wave and only complicates ground wave propagation near the boundary. Modeling of a monocline dielectric wedge shows predictable subsurface reflections and refractions, some of which are highly dispersive events, depending on the direction of propagation. We present two field examples that appear to demonstrate some of our findings. We conclude that air waves make suitable references for moveout profiles regardless of dielectric complications, and that our results provide some insight into the interpretation of unique events seen in moveout profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T. Saarenketo T. Scullion (2000) ArticleTitleRoad evaluation with ground penetrating radar J.Appl.Geophys 43 119–138 Occurrence Handle10.1016/S0926-9851(99)00052-X

    Article  Google Scholar 

  • L. Liu T. Guo (2003) ArticleTitleDetermining the condition of hot mix asphalt specimens in dry, water-saturated, and frozen conditions using GPR J. Environ. Eng. Geophys 8 143–149

    Google Scholar 

  • Bristow C.S.and Jol H.,M., (2003). Ground Penetrating Radar in Sediments, Special Publication 211, Geological Society of London, 330 pp.

  • S.A. Arcone (1996) ArticleTitleHigh resolution of glacial ice stratigraphy A ground-penetrating radar study of Pegasus Runway, McMurdo Station, Antarctica Geophysics 61 1653–1663 Occurrence Handle10.1190/1.1444084

    Article  Google Scholar 

  • A. Sommerfeld (1909) ArticleTitleUber die Ausbreitung der Wellen in der Drahtlosen telegrapjhie Ann Physik 28 665–737

    Google Scholar 

  • J.R. Wait (1970) Electromagnetic waves in stratified media, 2nd edition The MacMillan Co New York

    Google Scholar 

  • A.P. Annan (1973) ArticleTitleRadio interferometry depth sounding Part I-Theoretical discussion Geophysics 38 557–580 Occurrence Handle10.1190/1.1440360

    Article  Google Scholar 

  • A.P. Annan W.M. Waller D.W. Strangway J.R. Rossiter J.D. Redman R.D. Watts (1975) ArticleTitleThe electromagnetic response of a low-loss, 2-layer dielectric earth for horizontal electric dipole excitation Geophysics. 40 285–298 Occurrence Handle10.1190/1.1440525

    Article  Google Scholar 

  • S.A. Arcone (1995) ArticleTitleNumerical studies of the radiation patterns of resistively loaded dipoles J. Appl. Geophys 33 39–52 Occurrence Handle10.1016/0926-9851(94)00018-J

    Article  Google Scholar 

  • J.M. Carcione (1998) ArticleTitleRadiation patterns for 2-D GPR forward modeling Geophysics 63 424–430 Occurrence Handle10.1190/1.1444342

    Article  Google Scholar 

  • E. Slob J.T. Fokkema (2002) ArticleTitleInterfacial dipoles and radiated energy Subsurface Sensing Technol Appli 3 34–367

    Google Scholar 

  • S.A. Arcone (1984) ArticleTitleField observations of electromagnetic pulse propagation in dielectric slabs Geophysics 49 1763–1773 Occurrence Handle10.1190/1.1441584

    Article  Google Scholar 

  • S.A. Arcone P. Peapples L. Liu (2003) ArticleTitlePropagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide Geophysics 68 1922–1933 Occurrence Handle10.1190/1.1635046

    Article  Google Scholar 

  • L. Liu S.A. Arcone (2003) ArticleTitleNumerical simulation of the wave-guide effect of the near-surface thin layer on radar wave propagation J. Environ. Eng. Geophys 8 133–141

    Google Scholar 

  • J.J. RobertsR.L.and Daniels (1997) ArticleTitleModeling near-field GPR in three dimensions using the FDTD method Geophysics 62 1114–1126 Occurrence Handle10.1190/1.1444212

    Article  Google Scholar 

  • C.C. Radzevicius S.J.Chen L. Peters J.J. Daniels (2003) ArticleTitleNumerical simulation of the wave-guide effect of the near-surface thin layer on radar wave propagation J. Appl. Geophys 52 75–91 Occurrence Handle10.1016/S0926-9851(02)00241-0

    Article  Google Scholar 

  • Holliger K., Lampe B., Meier U., and Lambert M., (2004). Realistic modeling of surface ground-penetrating radar antenna systems: where do we stand?: Near Surface Geophys., 13–21

  • B.C. Welch W.T. Pfeffer J.T. Harper N.F. Humphrey (1998) ArticleTitleMapping subglacial surfaces of temperate valley glaciers by two-pass migration of a radio-echo sounding survey J. Glaciol. 17 39–48

    Google Scholar 

  • Arcone S.,A., Lawson D.,E., Delaney A.,J., and Moran M.,L., 2000, 12–100 MHz depth and stratigraphic profiles of temperate glaciers, Proceeding of Eighth International Conference on Ground-Penetrating Radar: Gold Coast, Australia, May, 2000.

  • A. Banos (1966) Dipole radiation in the Presence of a Conducting Half-Space Pergamon New York 245

    Google Scholar 

  • A. Taflove S.C. Hagness (2000) Computational Electromagnetics Artech House Boston, Massachusetts

    Google Scholar 

  • N. Bojarski (1985) ArticleTitleThe k-space formulation of the scattering problem in the time domain: An improved single propagator formulation J. Acoust. Soc. Am 77 826–831

    Google Scholar 

  • Q.H. Liu (1997) ArticleTitleThe PSTD algorithm: a time domain method requiring only two cells per wavelength Microwave Opt. Tech. Lett. 15 158–165 Occurrence Handle10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

    Article  Google Scholar 

  • C.T. Schroder W.R. Scott (2002) ArticleTitleOn the stability of the FDTD algorithm for elastic media at a material interface IEEE Trans. Geosci.Remote Sensing 40 474–481 Occurrence Handle10.1109/36.992813

    Article  Google Scholar 

  • R.E. Sheriff L.P. Geldart (1995) Exploration Seismology second edition Cambridge University Press Cambridge 592

    Google Scholar 

  • J. Kruk Particlevan der E.C. Slob (2004) ArticleTitleReduction of reflections from above surface objects in GPR data J. Appl. Geophys. 55 271–278 Occurrence Handle10.1016/j.jappgeo.2004.02.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanbo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Arcone, S.A. Propagation of Radar Pulses from a Horizontal Dipole in Variable Dielectric Ground: A Numerical Approach. Subsurf Sens Technol Appl 6, 5–24 (2005). https://doi.org/10.1007/s11220-005-4223-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11220-005-4223-2

Keywords

Navigation