Social Psychology of Education

, Volume 20, Issue 4, pp 831–847 | Cite as

Predicting gender-STEM stereotyped beliefs among boys and girls from prior school achievement and interest in STEM school subjects

  • Mirta Blažev
  • Mia Karabegović
  • Josip Burušić
  • Leila SelimbegovićEmail author


The aim of the present study was to examine, for the first time, the level of gender-stereotyped beliefs about STEM-related school subjects among Croatian primary school students and to explore how stereotyped beliefs can be predicted from prior achievement in STEM school subjects and students’ STEM interests. Eight hundred and eighty primary school students (442 girls and 438 boys) completed a paper-and-pencil questionnaire in their own classrooms (data used in the study are extracted from a larger STEM research project). The measures of interest in this study were stereotype endorsement, interest in STEM-related school subjects, and school marks in these subjects. Results suggest that regardless of prior school achievement, students who have stereotype-consistent interests in school subjects tend to show stronger stereotype endorsement than others. Male gender and prior achievement in STEM-related school subjects were also positively related to stereotype endorsement. These results are discussed in light of the existing literature and some practical implications are considered.


STEM Achievement Interest Gender Stereotypes 



This research was supported by Croatian Science Foundation Grant „IP-09-2014-9250-STEM career aspirations during primary schooling: A cohort-sequential longitudinal study of relations between achievement, self-competence beliefs, and career interests (JOBSTEM)”. Part of the results was presented on the EARA conference „ECER 2017“, Copenhagen, Denmark.


  1. Ambady, N., Shih, M., Kim, A., & Pittinsky, T. L. (2001). Stereotype susceptibility in children: Effects of identity activation on quantitative performance. Psychological Science, 12, 385–390. doi: 10.1111/1467-9280.00371.CrossRefGoogle Scholar
  2. Benbow, C. P., & Minor, L. L. (1986). Mathematically talented males and females and achievement in the high school sciences. American Educational Research Journal, 23, 425–436. doi: 10.3102/00028312023003425.CrossRefGoogle Scholar
  3. Brandell, G., & Staberg, E. M. (2008). Mathematics: A female, male or gender-neutral domain? A study of attitudes among students at secondary level. Gender and Education, 20, 495–509. doi: 10.1080/09540250701805771.CrossRefGoogle Scholar
  4. Buck, G. A., Clark, V. L. P., Leslie-Pelecky, D., Lu, Y., & Cerda-Lizarraga, P. (2008). Examining the cognitive processes used by adolescent girls and women scientists in identifying science role models: A feminist approach. Science Education, 92, 688–707. doi: 10.1002/sce.20257.CrossRefGoogle Scholar
  5. Burušić, J., Babarović, T., & Šerić, M. (2012). Differences in elementary school achievement between girls and boys: Does the teacher gender play a role? European Journal of Psychology of Education, 27, 523–538. doi: 10.1007/s10212-011-0093-2.CrossRefGoogle Scholar
  6. Catsambis, S. (1995). Gender, race, ethnicity, and science education in the middle grades. Journal of Research in Science Teaching, 32, 243–257. doi: 10.1002/tea.3660320305.CrossRefGoogle Scholar
  7. Cheryan, S., & Plaut, V. C. (2010). Explaining underrepresentation: A theory of precluded interest. Sex Roles, 63, 475–488. doi: 10.1007/s11199-010-9835-x.CrossRefGoogle Scholar
  8. Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance and conformity. Annual Review of Psychology, 55, 591–621. doi: 10.1146/annurev.psych.55.090902.142015.CrossRefGoogle Scholar
  9. Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math–gender stereotypes in elementary school children. Child Development, 82(3), 766–779. doi: 10.1111/j.1467-8624.2010.01529.x.CrossRefGoogle Scholar
  10. Dixon, T. L. (2008). Network news and racial beliefs: Exploring the connection between national television news exposure and stereotypical perceptions of African Americans. Journal of Communication, 58, 321–337. doi: 10.1111/j.1460-2466.2008.00387.x.CrossRefGoogle Scholar
  11. Duckworth, A. L., & Seligman, M. E. (2006). Self-discipline gives girls the edge: Gender in self-discipline, grades, and achievement test scores. Journal of Educational Psychology, 98, 198–208. doi: 10.1037/0022-0663.98.1.198.CrossRefGoogle Scholar
  12. European Commission. (2016). Pisa 2015. EU performance and initial conclusions regarding education policies in Europe. Retrieved from
  13. Farenga, S. J., & Joyce, B. A. (1999). Intentions of young students to enroll in science courses in the future: An examination of gender differences. Science Education, 83, 55–75. doi: 10.1002/(SICI)1098-237X(199901)83:1<55:AID-SCE3>3.0.CO;2-O.CrossRefGoogle Scholar
  14. Fennema, E. H., & Sherman, J. A. (1978). Sex-related differences in mathematics achievement and related factors: A further study. Journal for Research in Mathematics Education. doi: 10.2307/748997.Google Scholar
  15. Frome, P. M., & Eccles, J. S. (1998). Parents’ influence on children’s achievement-related perceptions. Journal of Personality and Social Psychology, 74, 435. doi: 10.1037/0022-3514.74.2.435.CrossRefGoogle Scholar
  16. Frost, L. A., Hyde, J. S., & Fennema, E. (1994). Gender, mathematics performance, and mathematics-related attitudes and affect: A meta-analytic synthesis. International Journal of Educational Research, 21, 373–385. doi: 10.1016/S0883-0355(06)80026-1.CrossRefGoogle Scholar
  17. Furnham, A., Reeves, E., & Budhani, S. (2002). Parents think their sons are brighter than their daughters: Sex differences in parental self-estimations and estimations of their children’s multiple intelligences. The Journal of Genetic Psychology, 163, 24–39. doi: 10.1080/00221320209597966.CrossRefGoogle Scholar
  18. Garriot, P. O., Hultgren, K. M., & Frazier, J. (2016). STEM stereotypes and high school students’ math/science career goals. Journal of Career Assessment. doi: 10.1177/1069072716665825. (Advance online publication).Google Scholar
  19. Gaulin, S. J. C., & Hoffman, H. A. (1998). Evolution and development of sex differences in spatial ability. In L. Betzig, M. B. Mulder, & P. Turke (Eds.), Human reproductive behaviour: A Darwinian perspective (pp. 129–152). Cambridge: Cambridge University Press.Google Scholar
  20. Greenwald, A. G., Banaji, M. R., & Nosek, B. A. (2015). Statistically small effects of the Implicit Association Test can have societally large effects. Journal of Personality and Social Psychology, 108, 553–561. doi: 10.1037/pspa0000016.CrossRefGoogle Scholar
  21. Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74, 1464–1480. doi: 10.1037/0022-3514.74.6.1464.CrossRefGoogle Scholar
  22. Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66, 153–166. doi: 10.1007/s11199-011-9996-2.CrossRefGoogle Scholar
  23. Holland, J. L. (1996). Exploring careers with a typology: What we have learned and some new directions. American Psychologist, 51(4), 397–406. doi: 10.1037/0003-066X.51.4.397.CrossRefGoogle Scholar
  24. Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321, 494–495. doi: 10.1126/science.1160364.CrossRefGoogle Scholar
  25. Kawakami, K., & Dovidio, J. F. (2001). The reliability of implicit stereotyping. Personality and Social Psychology Bulletin, 27, 212–225. doi: 10.1177/0146167201272007.CrossRefGoogle Scholar
  26. Keller, C. (2001). Effect of teachers’ stereotyping on students’ stereotyping of mathematics as a male domain. The Journal of Social Psychology, 141, 165–173. doi: 10.1080/00224540109600544.CrossRefGoogle Scholar
  27. Kiefer, A. K., & Sekaquaptewa, D. (2007). Implicit stereotypes, gender identification, and math-related outcomes: A prospective study of female college students. Psychological Science, 18, 13–18. doi: 10.1111/j.1467-9280.2007.01841.x.CrossRefGoogle Scholar
  28. Lane, K. A., Goh, J. X., & Driver-Linn, E. (2012). Implicit science stereotypes mediate the relationship between gender and academic participation. Sex Roles, 66, 220–234. doi: 10.1007/s11199-011-0036-z.CrossRefGoogle Scholar
  29. Lavy, V., & Sand, E. (2015). On the origins of gender human capital gaps: Short and long term consequences of teachers’ stereotypical biases (No. w20909). National Bureau of Economic Research.Google Scholar
  30. Lemm, K. M., Lane, K. A., Sattler, D. N., Khan, S. R., & Nosek, B. A. (2008). Assessing implicit cognitions with a paper-format implicit association test. In T. Morrison & M. Morrison (Eds.), The psychology of modern prejudice (pp. 123–146). Hauppauge, NY: Nova Science Publishers.Google Scholar
  31. Lent, R. W., Brown, S. D., Sheu, H. B., Schmidt, J., Brenner, B. R., Gloster, C. S., et al. (2005). Social cognitive predictors of academic interests and goals in engineering: Utility for women and students at historically black universities. Journal of Counseling Psychology, 52, 84–92. doi: 10.1037/0022-0167.52.1.84.CrossRefGoogle Scholar
  32. LeVine, R. A., & Campbell, D. T. (1972). Ethnocentrism: Theories of conflict, ethnic attitudes, and group behavior. New York: Wiley.Google Scholar
  33. Levy, S. R., Stroessner, S. J., & Dweck, C. S. (1998). Stereotype formation and endorsement: The role of implicit theories. Journal of Personality and Social Psychology, 74(6), 1421–1436. doi: 10.1037/0022-0167.52.1.84.CrossRefGoogle Scholar
  34. Li, Q. (1999). Teachers’ beliefs and gender differences in mathematics: A review. Educational Research, 41, 63–76. doi: 10.1080/0013188990410106.CrossRefGoogle Scholar
  35. Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123–1135. doi: 10.1037/a0021276.CrossRefGoogle Scholar
  36. Lippa, R. A. (2005). Subdomains of gender-related occupational interests: Do they form a cohesive bipolar M-F dimension? Journal of Personality, 73, 693–730. doi: 10.1111/j.1467-6494.2005.00326.x.CrossRefGoogle Scholar
  37. Lubinski, D., & Benbow, C. P. (1992). Gender differences in abilities and preferences among the gifted: Implications for the math-science pipeline. Current Directions in Psychological Science, 1, 61–66. doi: 10.1111/1467-8721.ep11509746.CrossRefGoogle Scholar
  38. Lubinski, D., & Benbow, C. P. (2006). Study of mathematically precocious youth after 35 years: Uncovering antecedents for the development of math-science expertise. Perspectives on Psychological Science, 1, 316–345. doi: 10.1111/j.1745-6916.2006.00019.x.CrossRefGoogle Scholar
  39. Mason, C. L., Kahle, J. B., & Gardner, A. L. (1991). Draw-a-scientist test: Future implications. School Science and Mathematics, 91, 193–198. doi: 10.1111/j.1949-8594.1991.tb12078.x.CrossRefGoogle Scholar
  40. Mullis, I. V. S., Martin, M. O., & Loveless, T. (2016). 20 years of TIMSS: International trends in mathematics and science achievement, curriculum, and instruction. Chestnut Hill, MA: Boston College, TIMSS and PIRLS International Study Center.Google Scholar
  41. National Science Board. (2016). Science and engineering indicators 2016. Arlington, VA: National Science Foundation (NSB-2016-1).Google Scholar
  42. National Science Foundation, National Center for Science and Engineering Statistics. (2013). Women, minorities, and persons with disabilities in science and engineering: 2013. Special Report NSF 13-304. Arlington, VA. Retrieved from
  43. Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002a). Harvesting implicit group attitudes and beliefs from a demonstration web site. Group Dynamics: Theory, Research, and Practice, 6, 101–115. doi: 10.1037/1089-2699.6.1.101.CrossRefGoogle Scholar
  44. Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002b). Math = male, me = female, therefore math ≠ me. Journal of Personality and Social Psychology, 83, 44–59. doi: 10.1037/0022-3514.83.1.44.CrossRefGoogle Scholar
  45. Nosek, B. A., & Smyth, F. L. (2011). Implicit social cognitions predict sex differences in math engagement and achievement. American Educational Research Journal, 48(5), 1125–1156. doi: 10.3102/0002831211410683.CrossRefGoogle Scholar
  46. Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., et al. (2009). National differences in gender-science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Science, 106(26), 10593–10597. doi: 10.1073/pnas.0809921106.CrossRefGoogle Scholar
  47. OECD. (2016). PISA 2015 results (Volume 1): Excellence and equity in education. Paris: PISA, OECD Publishing. doi: 10.1787/9789264266490-en.Google Scholar
  48. Patterson, M. M. (2012). Self-perceived gender typicality, gender-typed attributes, and gender stereotype endorsement in elementary-school-aged children. Sex Roles, 67(7–8), 422–434. doi: 10.1007/s11199-012-0184-9.CrossRefGoogle Scholar
  49. Penner, A. M., & Paret, M. (2008). Gender differences in mathematics achievement: Exploring the early grades and the extremes. Social Science Research, 37, 239–253. doi: 10.1016/j.ssresearch.2007.06.012.CrossRefGoogle Scholar
  50. Richard, F. D., Bond, C. F., Jr., & Stokes-Zoota, J. J. (2003). One hundred years of social psychology quantitatively described. Review of General Psychology, 7(4), 331–363. doi: 10.1037/1089-2680.7.4.331.CrossRefGoogle Scholar
  51. Robbins, J. M., & Krueger, J. I. (2005). Social projection to ingroups and outgroups: A review and meta-analysis. Personality and Social Psychology Review, 9, 32–47. doi: 10.1207/s15327957pspr0901_3.CrossRefGoogle Scholar
  52. Sadler, P. M., Sonnert, G., Hazari, Z., & Tai, R. (2012). Stability and volatility of STEM career interest in high school: A gender study. Science Education, 96, 411–427. doi: 10.1002/sce.21007.CrossRefGoogle Scholar
  53. Schmader, T., Johns, M., & Barquissau, M. (2004). The costs of accepting gender differences: The role of stereotype endorsement in women’s experience in the math domain. Sex Roles, 50, 835–850. doi: 10.1023/B:SERS.0000029101.74557.a0.CrossRefGoogle Scholar
  54. Simpkins, S. S., Davies-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42, 70–83. doi: 10.1037/0012-1649.42.1.70.CrossRefGoogle Scholar
  55. Steele, J. (2003). Children’s gender stereotypes about math: The role of stereotype stratification. Journal of Applied Social Psychology, 33, 2587–2606. doi: 10.1111/j.1559-1816.2003.tb02782.x.CrossRefGoogle Scholar
  56. Steffens, M. C., Jelenec, P., & Noack, P. (2010). On the leaky math pipeline: Comparing implicit math-gender stereotypes and math withdrawal in female and male children and adolescents. Journal of Educational Psychology, 102(4), 947–963. doi: 10.1037/a0019920.CrossRefGoogle Scholar
  57. Stoet, G., & Geary, D. C. (2013). Sex differences in mathematics and reading achievement are inversely related: Within-and across-nation assessment of 10 years of PISA data. PLoS ONE, 8(3), e57988. doi: 10.1371/journal.pone.0057988.CrossRefGoogle Scholar
  58. Stout, J. G., Ito, T. A., Finkelstein, N. D., & Pollock, S. J. (2012). How a gender gap in belonging contributes to the gender gap in physics participation. Proceedings of the 2012 Physics Education Research Conference. doi: 10.1063/1.4789737.Google Scholar
  59. Su, R., Rounds, J., & Armstrong, P. I. (2009). Men and things, women and people: A meta-analysis of sex differences in interests. Psychological Bulletin, 135, 859–884. doi: 10.1037/a0017364.CrossRefGoogle Scholar
  60. UNESCO. (2015). UNESCO science report: Towards 2030. Paris, France: UNESCO.Google Scholar
  61. Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174–1204. doi: 10.1037/a0036620.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Ivo Pilar Institute of Social SciencesZagrebCroatia
  2. 2.Central European UniversityBudapestHungary
  3. 3.Département de psychologieUniversité de Poitiers, et Centre de Recherches sur la Cognition et l’Apprentissage, UMR-CNRS 7295Poitiers CedexFrance

Personalised recommendations