Skip to main content
Log in

The Mars Microphone Onboard SuperCam

  • Special Communication
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The “Mars Microphone” is one of the five measurement techniques of SuperCam, an improved version of the ChemCam instrument that has been functioning aboard the Curiosity rover for several years. SuperCam is located on the rover’s Mast Unit, to take advantage of the unique pointing capabilities of the rover’s head. In addition to being the first instrument to record sounds on Mars, the SuperCam Microphone can address several original scientific objectives: the study of sound associated with laser impacts on Martian rocks to better understand their mechanical properties, the improvement of our knowledge of atmospheric phenomena at the surface of Mars such as atmospheric turbulence, convective vortices, dust lifting processes and wind interactions with the rover itself. The microphone also helps our understanding of the sound signature of the different movements of the rover: operations of the robotic arm and the mast, driving on the rough surface of Mars, monitoring of the pumps, etc. The SuperCam Microphone was delivered to the SuperCam team in early 2019 and integrated at the Jet Propulsion Laboratory (JPL), Pasadena, CA with the complete SuperCam instrument. The Mars 2020 Mission launched in July 2020 and landed on Mars on February 18, 2021. The mission operations are expected to last until at least August 2023. The microphone is operating perfectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  • Balme M, Greeley R (2006) Dust devils on Earth and Mars. Rev Geophys 44:RG3003. https://doi.org/10.1029/2005RG000188

    Article  ADS  Google Scholar 

  • Banerdt WB, Smrekar SE, Banfield D, Giardini D, Golombek M, Johnson CL, Lognonné P, Spiga A, Spohn T, Perrin C et al. (2020) Initial results from the insight mission on Mars. Nat Geosci 13(3):183–189. https://doi.org/10.1038/s41561-020-0544-y

    Article  ADS  Google Scholar 

  • Bass HE, Chambers JP (2001) Absorption of sound in the Martian atmosphere. J Acoust Soc Am 109(6):3069–3071. https://doi.org/10.1121/1.1365424

    Article  ADS  Google Scholar 

  • Bell JF, Maki JN, Mehall GL, Ravine MA, Caplinger MA, Bailey ZJ, Brylow S, Schaffner JA, Kinch KM, Madsen MB et al. (2021) The Mars 2020 Perseverance rover mast camera zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation. Space Sci Rev 217:24. https://doi.org/10.1007/s11214-020-00755-x

    Article  ADS  Google Scholar 

  • Chaleard C, Mauchien P, Andre N, Uebbing J, Lacour JL, Geertsen C (1997) Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry. J Anal At Spectrom 12(2):183–188

    Article  Google Scholar 

  • Chatain A, Spiga A, Banfield D, Forget F, Murdoch N (2021) Seasonal variability of the daytime and nighttime atmospheric turbulence experienced by InSight on Mars. Geophys Res Lett 48:e2021GL095453. https://doi.org/10.1029/2021GL095453

    Article  ADS  Google Scholar 

  • Chide B (2020) Le premier microphone sur Mars: contribution à la spectroscopie de plasma induit par laser et à la science atmosphérique. PhD thesis, Toulouse, ISAE. http://www.theses.fr/2020ESAE0041

  • Chide B, Maurice S, Murdoch N, Lasue J, Bousquet B, Jacob X, Cousin A, Forni O, Gasnault O, Meslin P-Y, Fronton J-F, Bassas-Portús M, Cadu A, Sournac A, Mimoun D, Wiens RC (2019) Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochim Acta 153:50–60. https://doi.org/10.1016/j.sab.2019.01.008

    Article  ADS  Google Scholar 

  • Chide B, Murdoch N, Bury Y, Maurice S, Jacob X, Merrison JP, Iversen JJ, Meslin P-Y, Bassas-Portús M, Cadu A, Sournac A, Dubois B, Lorenz RD, Mimoun D, Wiens RC (2021) Experimental wind characterization with the SuperCam microphone under a simulated Martian atmosphere. Icarus 354:114060. https://doi.org/10.1016/j.icarus.2020.114060

    Article  Google Scholar 

  • Dehant V, Lognonné P, Sotin C (2004) Network science, NetLander: a European mission to study the planet Mars. Planet Space Sci 52(11):977–985

    Article  ADS  Google Scholar 

  • Delory GT, Luhmann J, Friedman L, Betts B (2007) Development of the first audio microphone for use on the surface of Mars. J Acoust Soc Am 121(5):3116

    Article  ADS  Google Scholar 

  • Esposito F, Debei S, Bettanini C, Molfese C, Arruego Rodríguez I, Colombatti G, Harri A-M, Montmessin F, Wilson C, Aboudan A et al. (2013) DREAMS for the ExoMars 2016 mission: a suite of sensors for the characterization of Martian environment. In: European planetary science congress, pp EPSC2013-815

    Google Scholar 

  • Farley KA, Williford KH, Stack KM, Bhartia R, Chen A, de la Torre M, Hand K, Goreva Y, Herd CDK, Hueso R et al. (2020) Mars 2020 mission overview. Space Sci Rev 216:142. https://doi.org/10.1007/s11214-020-00762-y

    Article  ADS  Google Scholar 

  • Ferri F, Smith PH, Lemmon M, Rennó NO (2003) Dust devils as observed by Mars Pathfinder. J Geophys Res, Planets 108(E12):5133. https://doi.org/10.1029/2000JE001421

    Article  ADS  Google Scholar 

  • Grad L, Možina J (1993) Acoustic in situ monitoring of excimer laser ablation of different ceramics. Appl Surf Sci 69(1):370–375. https://doi.org/10.1016/0169-4332(93)90536-K

    Article  ADS  Google Scholar 

  • Hecht M, Hoffman J, Rapp D, McClean J, SooHoo J, Schaefer R, Aboobaker A, Mellstrom J, Hartvigsen J, Meyen F et al. (2021) Mars Oxygen ISRU Experiment (MOXIE). Space Sci Rev 217:9. https://doi.org/10.1007/s11214-020-00782-8

    Article  ADS  Google Scholar 

  • Holstein-Rathlou C, Merrison J, Iversen JJ, Jakobsen AB, Nicolajsen R, Nørnberg P, Rasmussen K, Merlone A, Lopardo G, Hudson T et al. (2014) An environmental wind tunnel facility for testing meteorological sensor systems. J Atmos Ocean Technol 31(2):447–457

    Article  Google Scholar 

  • Ksanfomaliti LV, Goroshkova NV, Naraeva MK, Suvorov AP, Khondryev VK, Yabrova LV (1982) Acoustic measurements of the wind velocity at the Venera-13 and Venera-14 landing sites. Sov Astron Lett 8:227–229

    ADS  Google Scholar 

  • Ksanfomaliti LV, Goroshkova NV, Khondyrev VK (1983) Wind velocity on the Venus surface from acoustic measurements. Kosm Issled 21:218–224

    ADS  Google Scholar 

  • Lanza NL, Chide B, Clegg SM, Dauson E, Forni O, Larmat C, Ollila AM, Reyes-Newell A, Ten Cate J, Wiens RC et al. (2020) Listening for rock coatings on Mars: using acoustic signals from laser-induced breakdown spectroscopy to identify surface coatings and layers. In: Lunar and planetary science conference, vol 51, p 2807

    Google Scholar 

  • Lanza N, Chide B, Mimoun D, Alvarez C, Angel S, Bernardi P, Beyssac O, Bousquet B, Cadu A Clave E et al. (2021) Expected first results from the SuperCam microphone onboard the NASA Perseverance rover. Technical report, Copernicus Meetings

  • Leighton TG, White PR (2004) The sound of Titan: a role for acoustics in space exploration. Acoust Bull 29(4):16–23

    Google Scholar 

  • Lorenz RD, Christie D (2015) Dust devil signatures in infrasound records of the International Monitoring System. Geophys Res Lett 42(6):2009–2014. https://doi.org/10.1002/2015GL063237

    Article  ADS  Google Scholar 

  • Lorenz RD, Merrison J, Iversen JJ (2017) Wind noise and sound propagation experiments in the Aarhus Mars atmosphere simulation chamber. In: Sixth international workshop on the Mars atmosphere: modelling and observations, p 4405

    Google Scholar 

  • Maki JN, Gruel D, McKinney C, Ravine MA, Morales M, Lee D, Willson R, Copley-Woods D, Valvo M, Goodsall T et al. (2020) The Mars 2020 engineering cameras and microphone on the Perseverance rover: a next-generation imaging system for Mars exploration. Space Sci Rev 216:137. https://doi.org/10.1007/s11214-020-00765-9

    Article  ADS  Google Scholar 

  • Malin MC, Caplinger MA, Edgett KS, Ghaemi FT, Ravine MA, Schaffner JA, Maki JN, Willson RG, Bell JF, Cameron JF et al. (2009) The Mars Science Laboratory (MSL) Mars Descent Imager (MARDI) flight instrument. In: 40th annual lunar and planetary science conference, p 1199

    Google Scholar 

  • Mangold N, Gupta S, Gasnault O, Dromart G, Tarnas JD, Sholes SF, Horgan B, Quantin-Nataf C, Brown AJ, Le Mouélic S et al. (2021) Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science 374(6568):711–717

    Article  ADS  Google Scholar 

  • Martire L, Garcia RF, Rolland L, Spiga A, Henri Lognonné P, Banfield D, Banerdt WB, Martin R (2020) Martian infrasound: numerical modeling and analysis of InSight’s data. J Geophys Res, Planets 125(6):e2020JE006376

    Article  ADS  Google Scholar 

  • Maurice S, Wiens RC, Saccoccio M, Barraclough B, Gasnault O, Forni O, Mangold N, Baratoux D, Bender S, Berger G et al. (2012) The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description. Space Sci Rev 170(1–4):95–166. https://doi.org/10.1007/s11214-012-9912-2

    Article  ADS  Google Scholar 

  • Maurice S, Wiens RC, Bernardi P, Caïs P, Robinson S, Nelson T, Gasnault O, Reess JM, Deleuze M, Rull F, Manrique JA, Abbaki S, Anderson RB, André Y, Angel SM, Arana G, Battault T, Beck P, Benzerara K, Bernard S, Berthias JP, Beyssac O, Bonafous M, Bousquet B, Boutillier M, Cadu A, Castro K, Chapron F, Chide B, Clark K, Clavé E, Clegg S, Cloutis E, Collin C, Cordoba EC, Cousin A, Dameury JC, D’Anna W, Daydou Y, Debus A, Deflores L, Dehouck E, Delapp D, De Los Santos G, Donny C, Doressoundiram A, Dromart G, Dubois B, Dufour A, Dupieux M, Egan M, Ervin J, Fabre C, Fau A, Fischer W, Forni O, Fouchet T, Frydenvang J, Gauffre S, Gauthier M, Gharakanian V, Gilard O, Gontijo I, Gonzalez R, Granena D, Grotzinger J, Hassen-Khodja R, Heim M, Hello Y, Hervet G, Humeau O, Jacob X, Jacquinod S, Johnson JR, Kouach D, Lacombe G, Lanza N, Lapauw L, Laserna J, Lasue J, Le Deit L, Le Mouélic S, Le Comte E, Lee QM, Legett C, Leveille R, Lewin E, Leyrat C, Lopez-Reyes G, Lorenz R, Lucero B, Madariaga JM, Madsen S, Madsen M, Mangold N, Manni F, Mariscal JF, Martinez-Frias J, Mathieu K, Mathon R, McCabe KP, McConnochie T, McLennan SM, Mekki J, Melikechi N, Meslin PY, Micheau Y, Michel Y, Michel JM, Mimoun D, Misra A, Montagnac G, Montaron C, Montmessin F, Moros J, Mousset V, Morizet Y, Murdoch N, Newell RT, Newsom H, Nguyen Tuong N, Ollila AM, Orttner G, Oudda L, Pares L, Parisot J, Parot Y, Pérez R, Pheav D, Picot L, Pilleri P, Pilorget C, Pinet P, Pont G, Poulet F, Quantin-Nataf C, Quertier B, Rambaud D, Rapin W, Romano P, Roucayrol L, Royer C, Ruellan M, Sandoval BF, Sautter V, Schoppers MJ, Schröder S, Seran HC, Sharma SK, Sobron P, Sodki M, Sournac A, Sridhar V, Standarovsky D, Storms S, Striebig N, Tatat M, Toplis M, Torre-Fdez I, Toulemont N, Velasco C, Veneranda M, Venhaus D, Virmontois C, Viso M, Willis P, Wong KW (2021) The SuperCam instrument suite on the Mars 2020 rover: science objectives and Mast-Unit description. Space Sci Rev 217(3):47. https://doi.org/10.1007/s11214-021-00807-w

    Article  ADS  Google Scholar 

  • Maurice S, Chide B, Murdoch N, Lorenz RD, Mimoun D, Wiens RC, Stott A, Jacob X, Bertrand T Montmessin F et al. (2022) In situ recording of Mars soundscape. Nature 605(7911):653–658. https://doi.org/10.1038/s41586-022-04679-0

    Article  ADS  Google Scholar 

  • Mimoun D, Murdoch N, Lognonné P, Hurst K, Pike WT, Hurley J, Nébut T, Banerdt WB (SEIS Team) (2017) The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci Rev. https://doi.org/10.1007/s11214-017-0409-x

    Article  Google Scholar 

  • Morgan S, Raspet R (1992) Investigation of the mechanisms of low-frequency wind noise generation outdoors. J Acoust Soc Am 92(2):1180–1183

    Article  ADS  Google Scholar 

  • Muirhead BK, Nicholas AK, Umland J, Sutherland O, Vijendran S (2020) Mars sample return campaign concept status. Acta Astronaut 176:131–138

    Article  ADS  Google Scholar 

  • Murdoch N, Chide B, Lasue J, Cadu A, Sournac A, Bassas-Portús M, Jacob X, Merrison J, Iversen JJ, Moretto C, Velasco C, Parès L, Hynes A, Godiver V, Lorenz RD, Cais P, Bernadi P, Maurice S, Wiens RC, Mimoun D (2019) Laser-induced breakdown spectroscopy acoustic testing of the Mars 2020 microphone. Planet Space Sci 165:260–271. https://doi.org/10.1016/j.pss.2018.09.009

    Article  ADS  Google Scholar 

  • Murdoch N, Lorenz R, Chide B, Cadu A, Stott A, Maurice S, Wiens RC, Mimoun D (2021a) Predicting signatures of dust devils recorded by the SuperCam microphone. In: Lunar and planetary science conference, vol 2548, p 1658

    Google Scholar 

  • Murdoch DM, Stott AE, Chide B, Lorenz R, Maurice S, de la Torre Juarez M, Newman C, Wolff M, Wiens RC (2021b) The Perseverance acoustics, and atmospherics working groups. Atmospheric science with the SuperCam microphone on the Perseverance rover. In: Europlanet science congress, vol 2548, pp EPSC2021-516, https://doi.org/10.5194/epsc2021-516

    Chapter  Google Scholar 

  • Murphy J, Steakley K, Balme M, Deprez G, Esposito F, Kahanpää H, Lemmon M, Lorenz R, Murdoch N, Neakrase L et al. (2016) Field measurements of terrestrial and Martian dust devils. Space Sci Rev 203(1):39–87. https://doi.org/10.1007/s11214-016-0283-y

    Article  ADS  Google Scholar 

  • Perrin C, Rodriguez S, Jacob A, Lucas A, Spiga A, Murdoch N, Lorenz R, Daubar IJ, Pan L, Kawamura T et al. (2020) Monitoring of dust devil tracks around the InSight landing site, Mars, and comparison with in situ atmospheric data. Geophys Res Lett 47(10):e2020GL087234. https://doi.org/10.1029/2020GL087234

    Article  ADS  Google Scholar 

  • Qin Q, Attenborough K (2004) Characteristics and application of laser-generated acoustic shock waves in air. Appl Acoust 65(4):325–340. https://doi.org/10.1016/j.apacoust.2003.11.003

    Article  Google Scholar 

  • Rehse S (2021) What is LIBS? University of Windsor https://www.uwindsor.ca/people/rehse/299/libs, November 2021

  • Rodriguez-Manfredi JA, de la Torre Juárez M, Alonso A, Apéstigue V, Arruego I, Atienza T, Banfield D, Boland J, Carrera MA, Castañer L et al. (2021) The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Sci Rev 217:48. https://doi.org/10.1007/s11214-021-00816-9

    Article  ADS  Google Scholar 

  • Smith PH (2004) The Phoenix mission to Mars. In: 2004 IEEE aerospace conference proceedings (IEEE cat. no. 04TH8720), vol 1. IEEE Press, New York

    Google Scholar 

  • Sparrow VW (1999) Acoustics on the planet Mars: a preview. J Acoust Soc Am 106(4):2264

    Article  ADS  Google Scholar 

  • Spiga A, Teanby NA, Forget F, Lucas A, Banfield D et al. (2018) Atmospheric Science with InSight. Space Sci Rev 214:109. https://doi.org/10.1007/s11214-018-0543-0

    Article  ADS  Google Scholar 

  • Temel O, Senel CB, Spiga A, Murdoch N, Banfield D, Karatekin O (2022) Spectral analysis of the Martian atmospheric turbulence: InSight observations. Geophys Res Lett 49(15):e2022GL099388. https://doi.org/10.1029/2022GL099388

    Article  ADS  Google Scholar 

  • Tillman JE, Landberg L, Larsen SE (1994) The boundary layer of Mars: fluxes, stability, turbulent spectra, and growth of the mixed layer. J Atmos Sci 51(12):1709–1727

    Article  ADS  Google Scholar 

  • Ullán A, Zorzano M-P, Martín-Torres FJ, Valentín-Serrano P, Kahanpää H, Harri A-M, Gómez-Elvira J, Navarro S (2017) Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater. Icarus 288:78–87. https://doi.org/10.1016/j.icarus.2017.01.020

    Article  ADS  Google Scholar 

  • Wiens RC, Maurice S, Robinson SH, Nelson AE, Cais P, Bernardi P, Newell RT, Clegg S, Sharma SK, Storms S, Deming J, Beckman D, Ollila AM, Gasnault O, Anderson RB, André Y, Angel SM, Arana G, Auden E, Beck P, Becker J, Benzerara K, Bernard S, Beyssac O, Borges L, Bousquet B, Boyd K, Caffrey M, Carlson J, Castro K, Celis Baptiste Chide J, Clark K, Cloutis E, Cordoba EC, Cousin A, Dale M, Deflores L, Delapp D, Deleuze M, Dirmyer M, Donny C, Dromart G, George Duran M, Egan M, Ervin J, Fabre C, Fau A, Fischer W, Forni O, Fouchet T, Fresquez R, Frydenvang J, Gasway D, Gontijo I, Grotzinger J, Jacob X, Jacquinod S, Johnson JR, Klisiewicz RA, Lake J, Lanza N, Laserna J, Lasue J, Le Mouélic S, Legett C, Leveille R, Lewin E, Lopez-Reyes G, Lorenz R, Lorigny E, Love SP, Lucero B, Madariaga JM, Madsen M, Madsen S, Mangold N, Manrique JA, Martinez JP, Martinez-Frias J, McCabe KP, McConnochie TH, McGlown JM, McLennan SM, Melikechi N, Meslin P-Y, Michel JM, Mimoun D, Misra A, Montagnac G, Montmessin F, Mousset V, Murdoch N, Newsom H, Ott LA, Ousnamer ZR, Pares L, Parot Y, Pawluczyk R, Glen Peterson C, Pilleri P, Pinet P, Pont G, Poulet F, Provost C, Quertier B, Quinn H, Rapin W, Reess J-M, Regan AH, Reyes-Newell AL, Romano PJ, Royer C, Rull F, Sandoval B, Sarrao JH, Sautter V, Schoppers MJ, Schröder S, Seitz D, Shepherd T, Sobron P, Dubois B, Sridhar V, Toplis MJ, Torre-Fdez I, Trettel IA, Underwood M, Valdez A, Valdez J, Venhaus D, Willis P (2021) The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci Rev 217(1):4. https://doi.org/10.1007/s11214-020-00777-5

    Article  ADS  Google Scholar 

  • Williams J-P (2001) Acoustic environment of the Martian surface. J Geophys Res 106:5033–5042. https://doi.org/10.1029/1999JE001174

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the French space agency (CNES), from ISAE-SUPAERO, and from Région Occitanie. The authors would also like to thank Ralph Lorenz for his useful insights on the historical part.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to David Mimoun.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Note by the Editor: This is a Special Communication, linked to the Topical Collection on the Mars 2020 mission published in Space Science Reviews. Space Science Reviews publishes unsolicited Special Communications. These are papers linked to an earlier topical volume/collection, report-type papers, or timely papers dealing with a strong space-science-technology combination (such papers summarize the science and technology of an instrument or mission in one paper).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mimoun, D., Cadu, A., Murdoch, N. et al. The Mars Microphone Onboard SuperCam. Space Sci Rev 219, 5 (2023). https://doi.org/10.1007/s11214-022-00945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-022-00945-9

Keywords

Navigation